Esempio n. 1
0
def psffit(psf, frame, loc=None, w=None, scale=100, dframe=9, xoffs=None, yoffs=None, verbose=False):
    """
    Conduct simple PRF model-fitting at a specified grid of positions

    :INPUTS:
       psf -- model PSF (or PRF), supersampled by factor 'scale'

       frame -- science frame to which psf will be fit. best if it's odd-sized
       
    :OPTIONS:
       loc -- (x,y) integers, star location in data frame (e.g., data[x,y])

       w -- [array] weights of pixels in data frame, (typ. 1/sigma^2)

       scale -- supersampling level of PSF

       dframe -- [odd int] diameter of square box around target
                 location. Errors may occur if this size is larger
                 than your binned-down PRF model.

       xoffs -- [int array] subpixel x offsets to test.  

       yoffs -- [int array] subpixel y offsets to test.  

    :RETURNS:
      modelpsf, data, chisq, background, fluxscale, xoffset, yoffset, chisq[ii,jj],background[ii,jj], fluxscale[ii,jj]

    :EXAMPLE:
      ::
      
        import k2
        import phot
        import pylab as py

        fn = 'kplr060018142-2014044044430_lpd-targ.fits'
        f = pyfits.open('kplr060018142-2014044044430_lpd-targ.fits')
        image = f[1].data['flux'][0]
        prf = k2.loadPRF(fn)
        out = phot.psffit(prf, image, (33, 23), scale=50, dframe=7, verbose=True)

        py.figure()
        py.subplot(132)
        py.imshow(out[0])
        py.title('Best-fit Model PRF')
        py.colorbar()
        py.subplot(131)
        py.imshow(out[1])
        py.title('Observed Data')
        py.clim([out[0].min(), out[0].max()])
        py.colorbar()
        py.subplot(133)
        py.imshow(out[1] - out[0])
        py.title('Data - Model')
        py.colorbar()

    """
    # 2009-10-07 14:18 IJC: Created.
    # 2011-05-11 22:16 IJC: Added a try/except/pdb debugging step
    # 2014-09-04 08:32 IJMC: Moderate overhaul!  Updated
    #                        documentation, changed numpy function
    #                        calls to 'np.X', replaced np.nonzero()
    #                        call with simple centroid.

    #from numpy import arange, prod, zeros,vstack,dot, nonzero, diag,floor,abs,max,hstack
    #from numpy.linalg import pinv
    import analysis as an
    from time import time
    import pdb

    tic = time()

    
    if w is None:
        w = np.zeros(frame.shape)+1
    if loc is None:
        loc = ((frame.shape[1]-1)/2,(frame.shape[0]-1)/2)
    if xoffs is None:
        xoffs = np.arange(scale) #arange(scale)
    if yoffs is None:
        yoffs = np.arange(scale) #arange(scale)

    ycen = int(loc[0])
    xcen = int(loc[1])
    # Pick a thumbnail frame size to use, and cut it out of the larger frame
    if verbose>0:
        print "frame.shape>>", frame.shape
        print "(xcen, ycen, dframe)>>", xcen,ycen,dframe
        print "limits>>" , (ycen-(dframe-1)/2.), (ycen+(dframe+1)/2.), (xcen-(dframe-1)/2.), (xcen+(dframe+1)/2.)
        print "xoffs, yoffs>>", xoffs, yoffs
    data = frame[(ycen-(dframe-1)/2.):(ycen+(dframe+1)/2.), 
                 (xcen-(dframe-1)/2.):(xcen+(dframe+1)/2.)]
    weights = w[(ycen-(dframe-1)/2.):(ycen+(dframe+1)/2.), 
                 (xcen-(dframe-1)/2.):(xcen+(dframe+1)/2.)]
    wmat = np.diag(weights.ravel())

    extrasize = 2*max(np.abs(np.floor(1.0*np.hstack((xoffs,yoffs))/scale)))
    exs = 2*scale*dframe #extrasize*scale/2
    if verbose>0: print "extrasize>> ",extrasize

    # Determine how much of the PSF to cut out, and cut it out. If it
    # is too small, then zero-pad it.
    dpsf0 = (dframe+1)*scale-1
    dpsf1 = dframe*scale-1
    psfModelTooSmall = True
    while psfModelTooSmall:
        psf_x, psf_y = np.arange(psf.shape[0]), np.arange(psf.shape[1])
        pycen = (psf_x*psf.sum(1)).sum()/psf.sum()
        pxcen = (psf_y*psf.sum(0)).sum()/psf.sum()
        #pycen, pxcen = (psf==psf.max()).nonzero()  # Slower!!
        pxmin = int(pxcen-(dpsf0-1)/2-exs)
        pxmax = int(pxcen+(dpsf0+1)/2+exs)
        pymin = int(pycen-(dpsf0-1)/2-exs)
        pymax = int(pycen+(dpsf0+1)/2+exs)
        if verbose>0: print "shape & indices>>", psf.shape, pymin, pymax, pxmin, pxmax
        if pxmin<0 or pymin<0 or pxmax>=psf.shape[1] or pymax>=psf.shape[0]:
            psfModelTooSmall = True
            psf = an.pad(psf, 2*psf.shape[0], 2*psf.shape[1])
        else:
            psfModelTooSmall = False
        

    smpsf = psf[pymin:pymax, pxmin:pxmax]

    if verbose>0: print "data.shape>>" , data.shape
    ndata = data.size
    if verbose>0: print "ndata>> %i" % ndata
    const = np.zeros(ndata,float)+1
    background = np.zeros((len(xoffs),len(yoffs)), float)
    fluxscale =  np.zeros((len(xoffs),len(yoffs)), float)
    chisq = np.zeros((len(xoffs),len(yoffs)), float)
    if verbose>0: 
        print "wmat.shape>>", wmat.shape
        print "data.ravel().shape>>", data.ravel().shape

    dfs = dframe * scale                  
    initoffset_min = scale - 1 + exs      
    initoffset_max = scale - 1 + exs + dfs
    nx = len(xoffs)
    ny = len(yoffs)
    rangeny = range(ny)
    for ii in range(nx):
        xoffset = xoffs[ii]
        xmin, xmax = int(initoffset_min-xoffset), int(initoffset_max-xoffset)
        for jj in rangeny:
            #   Cut out the correct portion of the model PSF
            yoffset = yoffs[jj]
            ymin, ymax = int(initoffset_min-yoffset), int(initoffset_max-yoffset)
            #   Bin down the PSF by the correct factor.  Sizes should now match!
            #pdb.set_trace()
            #binpsf = an.binarray(smpsf[ymin:ymax, xmin:xmax],scale)
            binpsfs = [an.binarray(smpsf[ymin:ymax, xmin:xmax],scale), \
                       an.binarray(smpsf[ymin+1:ymax+1, xmin:xmax],scale), \
                       an.binarray(smpsf[ymin:ymax, xmin+1:xmax+1],scale), \
                       an.binarray(smpsf[ymin+1:ymax+1, xmin+1:xmax+1],scale)]
            xfrac, yfrac = xoffset - int(xoffset), yoffset - int(yoffset)
            binpsf_weights = [(1. - xfrac)*(1.-yfrac), yfrac*(1.-xfrac), (1.-yfrac)*xfrac, xfrac*yfrac]
            binpsf = np.array([bp*bpw for bp, bpw in zip(binpsfs, binpsf_weights)]).sum(0) / np.sum(binpsf_weights)
            #pdb.set_trace()
            #   Compute the best-fit background & PSF scaling factor
            if verbose>0:
                print "xmat shapes>> ",const.shape, binpsf.ravel().shape
                print "ymin,ymax,xmin,xmax>> ",ymin,ymax, xmin,xmax
                print "binpsf.shape>> ",binpsf.shape
            try:
                xmat = np.vstack((const,binpsf.ravel())).transpose()
                fitvec, efitvec = an.lsq(xmat, data.ravel(), w=weights.ravel())
                background[ii,jj], fluxscale[ii,jj] = fitvec
                if c_chisq:
                    chisq[ii,jj] = _chi2.chi2(np.dot(xmat, fitvec), data.ravel(), weights.ravel())
                else:
                    chisq[ii,jj] = (weights.ravel() * (np.dot(xmat, fitvec) - data.ravel())**2).sum()
            except:
                print "error occurred"
                chisq[ii,jj] = 9e99
                pdb.set_trace()
                

    ii,jj = (chisq==chisq.min()).nonzero()
    if len(ii)>1: # more than one chisquared minimum found!
        ii = ii[0]
        jj = jj[0]
    xoffset = xoffs[ii]
    xmin, xmax = int(scale-xoffset-1+exs), int(scale-xoffset-1 + dfs+exs)
    yoffset = yoffs[jj]
    ymin, ymax = int(scale-yoffset-1+exs), int(scale-yoffset-1 + dfs+exs)
    #   Bin down the PSF by the correct factor.  Sizes should now match!
    binpsf = an.binarray(smpsf[ymin:ymax, xmin:xmax],scale)
    modelpsf = background[ii,jj] + fluxscale[ii,jj]*binpsf
    #print "%f seconds for completion!" % (time()-tic)
    return modelpsf, data, chisq, background, fluxscale, xoffset, yoffset, chisq[ii,jj],background[ii,jj], fluxscale[ii,jj]
Esempio n. 2
0
import numpy as np
from _chi2 import chi2

if __name__ == '__main__':
 
    mu_y = 0.
    sig_y = 5.
    mu_x = 0.21
    sig_x = 3.

    N = int(1000)
    m = float(1.)
    b = float(0.)

    x = np.random.normal(mu_x, sig_x, N).astype('float64')
    y = np.random.normal(mu_y, sig_y, N).astype('float64')
    yerr = np.array([sig_y] * N, 'float64')
    result = chi2(m, b, x, y, yerr)  # The module determines N from the arguments.
    print(result)

Esempio n. 3
0
def psffit(psf, frame, loc=None, w=None, scale=100, dframe=9, xoffs=None, yoffs=None, verbose=False):
    """
    Conduct simple PRF model-fitting at a specified grid of positions

    :INPUTS:
       psf -- model PSF (or PRF), supersampled by factor 'scale'

       frame -- science frame to which psf will be fit. best if it's odd-sized
       
    :OPTIONS:
       loc -- (x,y) integers, star location in data frame (e.g., data[x,y])

       w -- [array] weights of pixels in data frame, (typ. 1/sigma^2)

       scale -- supersampling level of PSF

       dframe -- [odd int] diameter of square box around target
                 location. Errors may occur if this size is larger
                 than your binned-down PRF model.

       xoffs -- [int array] subpixel x offsets to test.  

       yoffs -- [int array] subpixel y offsets to test.  

    :RETURNS:
      modelpsf, data, chisq, background, fluxscale, xoffset, yoffset, chisq[ii,jj],background[ii,jj], fluxscale[ii,jj]

    :EXAMPLE:
      ::
      
        import k2
        import phot
        import pylab as py

        fn = 'kplr060018142-2014044044430_lpd-targ.fits'
        f = pyfits.open('kplr060018142-2014044044430_lpd-targ.fits')
        image = f[1].data['flux'][0]
        prf = k2.loadPRF(fn)
        out = phot.psffit(prf, image, (33, 23), scale=50, dframe=7, verbose=True)

        py.figure()
        py.subplot(132)
        py.imshow(out[0])
        py.title('Best-fit Model PRF')
        py.colorbar()
        py.subplot(131)
        py.imshow(out[1])
        py.title('Observed Data')
        py.clim([out[0].min(), out[0].max()])
        py.colorbar()
        py.subplot(133)
        py.imshow(out[1] - out[0])
        py.title('Data - Model')
        py.colorbar()

    """
    # 2009-10-07 14:18 IJC: Created.
    # 2011-05-11 22:16 IJC: Added a try/except/pdb debugging step
    # 2014-09-04 08:32 IJMC: Moderate overhaul!  Updated
    #                        documentation, changed numpy function
    #                        calls to 'np.X', replaced np.nonzero()
    #                        call with simple centroid.

    #from numpy import arange, prod, zeros,vstack,dot, nonzero, diag,floor,abs,max,hstack
    #from numpy.linalg import pinv
    import analysis as an
    from time import time
    import pdb

    tic = time()

    
    if w==None:
        w = np.zeros(frame.shape)+1
    if loc==None:
        loc = ((frame.shape[1]-1)/2,(frame.shape[0]-1)/2)
    if xoffs==None:
        xoffs = np.arange(scale) #arange(scale)
    if yoffs==None:
        yoffs = np.arange(scale) #arange(scale)

    ycen = int(loc[0])
    xcen = int(loc[1])
    # Pick a thumbnail frame size to use, and cut it out of the larger frame
    if verbose>0:
        print "frame.shape>>", frame.shape
        print "(xcen, ycen, dframe)>>", xcen,ycen,dframe
        print "limits>>" , (ycen-(dframe-1)/2.), (ycen+(dframe+1)/2.), (xcen-(dframe-1)/2.), (xcen+(dframe+1)/2.)
        print "xoffs, yoffs>>", xoffs, yoffs
    data = frame[(ycen-(dframe-1)/2.):(ycen+(dframe+1)/2.), 
                 (xcen-(dframe-1)/2.):(xcen+(dframe+1)/2.)]
    weights = w[(ycen-(dframe-1)/2.):(ycen+(dframe+1)/2.), 
                 (xcen-(dframe-1)/2.):(xcen+(dframe+1)/2.)]
    wmat = np.diag(weights.ravel())

    extrasize = 2*max(np.abs(np.floor(1.0*np.hstack((xoffs,yoffs))/scale)))
    exs = 2*scale*dframe #extrasize*scale/2
    if verbose>0: print "extrasize>> ",extrasize

    # Determine how much of the PSF to cut out, and cut it out. If it
    # is too small, then zero-pad it.
    dpsf0 = (dframe+1)*scale-1
    dpsf1 = dframe*scale-1
    psfModelTooSmall = True
    while psfModelTooSmall:
        psf_x, psf_y = np.arange(psf.shape[0]), np.arange(psf.shape[1])
        pycen = (psf_x*psf.sum(1)).sum()/psf.sum()
        pxcen = (psf_y*psf.sum(0)).sum()/psf.sum()
        #pycen, pxcen = (psf==psf.max()).nonzero()  # Slower!!
        pxmin = int(pxcen-(dpsf0-1)/2-exs)
        pxmax = int(pxcen+(dpsf0+1)/2+exs)
        pymin = int(pycen-(dpsf0-1)/2-exs)
        pymax = int(pycen+(dpsf0+1)/2+exs)
        if verbose>0: print "shape & indices>>", psf.shape, pymin, pymax, pxmin, pxmax
        if pxmin<0 or pymin<0 or pxmax>=psf.shape[1] or pymax>=psf.shape[0]:
            psfModelTooSmall = True
            psf = an.pad(psf, 2*psf.shape[0], 2*psf.shape[1])
        else:
            psfModelTooSmall = False
        

    smpsf = psf[pymin:pymax, pxmin:pxmax]

    if verbose>0: print "data.shape>>" , data.shape
    ndata = data.size
    if verbose>0: print "ndata>> %i" % ndata
    const = np.zeros(ndata,float)+1
    background = np.zeros((len(xoffs),len(yoffs)), float)
    fluxscale =  np.zeros((len(xoffs),len(yoffs)), float)
    chisq = np.zeros((len(xoffs),len(yoffs)), float)
    if verbose>0: 
        print "wmat.shape>>", wmat.shape
        print "data.ravel().shape>>", data.ravel().shape

    dfs = dframe * scale                  
    initoffset_min = scale - 1 + exs      
    initoffset_max = scale - 1 + exs + dfs
    nx = len(xoffs)
    ny = len(yoffs)
    rangeny = range(ny)
    for ii in range(nx):
        xoffset = xoffs[ii]
        xmin, xmax = int(initoffset_min-xoffset), int(initoffset_max-xoffset)
        for jj in rangeny:
            #   Cut out the correct portion of the model PSF
            yoffset = yoffs[jj]
            ymin, ymax = int(initoffset_min-yoffset), int(initoffset_max-yoffset)
            #   Bin down the PSF by the correct factor.  Sizes should now match!
            #pdb.set_trace()
            #binpsf = an.binarray(smpsf[ymin:ymax, xmin:xmax],scale)
            binpsfs = [an.binarray(smpsf[ymin:ymax, xmin:xmax],scale), \
                       an.binarray(smpsf[ymin+1:ymax+1, xmin:xmax],scale), \
                       an.binarray(smpsf[ymin:ymax, xmin+1:xmax+1],scale), \
                       an.binarray(smpsf[ymin+1:ymax+1, xmin+1:xmax+1],scale)]
            xfrac, yfrac = xoffset - int(xoffset), yoffset - int(yoffset)
            binpsf_weights = [(1. - xfrac)*(1.-yfrac), yfrac*(1.-xfrac), (1.-yfrac)*xfrac, xfrac*yfrac]
            binpsf = np.array([bp*bpw for bp, bpw in zip(binpsfs, binpsf_weights)]).sum(0) / np.sum(binpsf_weights)
            #pdb.set_trace()
            #   Compute the best-fit background & PSF scaling factor
            if verbose>0:
                print "xmat shapes>> ",const.shape, binpsf.ravel().shape
                print "ymin,ymax,xmin,xmax>> ",ymin,ymax, xmin,xmax
                print "binpsf.shape>> ",binpsf.shape
            try:
                xmat = np.vstack((const,binpsf.ravel())).transpose()
                fitvec, efitvec = an.lsq(xmat, data.ravel(), w=weights.ravel())
                background[ii,jj], fluxscale[ii,jj] = fitvec
                if c_chisq:
                    chisq[ii,jj] = _chi2.chi2(np.dot(xmat, fitvec), data.ravel(), weights.ravel())
                else:
                    chisq[ii,jj] = (weights.ravel() * (np.dot(xmat, fitvec) - data.ravel())**2).sum()
            except:
                print "error occurred"
                chisq[ii,jj] = 9e99
                pdb.set_trace()
                

    ii,jj = (chisq==chisq.min()).nonzero()
    if len(ii)>1: # more than one chisquared minimum found!
        ii = ii[0]
        jj = jj[0]
    xoffset = xoffs[ii]
    xmin, xmax = int(scale-xoffset-1+exs), int(scale-xoffset-1 + dfs+exs)
    yoffset = yoffs[jj]
    ymin, ymax = int(scale-yoffset-1+exs), int(scale-yoffset-1 + dfs+exs)
    #   Bin down the PSF by the correct factor.  Sizes should now match!
    binpsf = an.binarray(smpsf[ymin:ymax, xmin:xmax],scale)
    modelpsf = background[ii,jj] + fluxscale[ii,jj]*binpsf
    #print "%f seconds for completion!" % (time()-tic)
    return modelpsf, data, chisq, background, fluxscale, xoffset, yoffset, chisq[ii,jj],background[ii,jj], fluxscale[ii,jj]
Esempio n. 4
0
import numpy as np
from _chi2 import chi2

if __name__ == '__main__':

    mu_y = 0.
    sig_y = 5.
    mu_x = 0.21
    sig_x = 3.

    N = int(1000)
    m = float(1.)
    b = float(0.)

    x = np.random.normal(mu_x, sig_x, N).astype('float64')
    y = np.random.normal(mu_y, sig_y, N).astype('float64')
    yerr = np.array([sig_y] * N, 'float64')
    result = chi2(m, b, x, y,
                  yerr)  # The module determines N from the arguments.
    print(result)
Esempio n. 5
0
#!/usr/bin/env python

import _chi2
print _chi2.chi2(2.0, 1.0, [-1.0, 4.2, 30.6], [-1.5, 8.0, 63.0], [1.0, 1.5, 0.6])
Esempio n. 6
0
#!/usr/bin/env python

import _chi2
print _chi2.chi2(2.0, 1.0, [-1.0, 4.2, 30.6], [-1.5, 8.0, 63.0],
                 [1.0, 1.5, 0.6])