options.args.predict_label, options.args.data_method) #Step 8: Add all datasources and transform them to row(Y, X) format #Custom, should be self-made! #Step 8.1: Add the files or folders the data is preserved in (only if available) if options.args.predict_languages: data.file_train = options.args.data_folder + 'training/' # data.file_development = 'eng-trial.pickle' # data.file_test = 'eng-test.pickle' #Custom function data.languages = options.args.predict_languages #Load data into a file data.train = data.load(data.file_train, format='specific_age_gender') if data.file_development != '': data.development = data.load(data.file_development, format='specific_age_gender') if data.file_test != '': data.test = data.load(data.file_test, format='specific_age_gender') #Step 8.2: Formulate the preprocessing steps which have to be done textPreprocessing = ['replaceTwitterURL', 'replaceDate', 'replaceYear'] #Step 8.3: Transform the data to our desired format data.transform( _type='YXrow', preprocessing=textPreprocessing ) #> now we got X, Y and X_train, Y_train, X_development, Y_development and X_test #Step 8.4: For training purposes, we can specify what our subset will look like (train_size, development_size, test_size)
printer.system(options.args_dict) #Step 7: Create data with default arguments data = Data(options.args.avoid_skewness, options.args.data_folder, options.args.predict_label, options.args.data_method) #Step 8: Add all datasources and transform them to row(Y, X) format #Custom, should be self-made! #Step 8.1: Add the files or folders the data is preserved in (only if available) data.file_train = 'impression_data.csv' #Custom function data.languages = options.args.predict_languages #Load data into a file data.train, test = data.load(data.file_train, format='complex_file') x_tester = [x[1] for x in test] y_tester = [y[0] for y in test] #Step 8.2: Formulate the preprocessing steps which have to be done textPreprocessing = [] #Step 8.3: Transform the data to our desired format data.transform(_type='YXrow', preprocessing=textPreprocessing) #> now we got X, Y and X_train, Y_train, X_development, Y_development and X_test #Step 8.4: For training purposes, we can specify what our subset will look like (train_size, development_size, test_size) #data.subset(500, 50, 50) #Step 9: Specify the features to use, this part is merely for sklearn. features = ClassifierFeatures() #features.add('headline', TfidfVectorizer(tokenizer=TextTokenizer.tokenizeText, lowercase=False, analyzer='word', ngram_range=(1,1), min_df=1), 'headline'),#, max_features=100000)), # features.add('headline_words', TfidfVectorizer(tokenizer=TextTokenizer.tokenizeText, lowercase=False, analyzer='word', ngram_range=(1,1), min_df=1), 'headline'),#, max_features=100000)),
data = Data(options.args.avoid_skewness, options.args.data_folder, options.args.predict_label, options.args.data_method) #Step 8: Add all datasources and transform them to row(Y, X) format #Custom, should be self-made! #Step 8.1: Add the files or folders the data is preserved in (only if available) file_name = 'conversion_path' #data.file_train = 'conversion_chance.pickle' #data.file_train = 'conversion_product.pickle' data.file_train = file_name'.pickle' #Custom function #Load data into a file data.train = data.load(data.file_train, format='pickle') counter = {} for row in data.train: if row[0] not in counter: counter[row[0]] = 0 counter[row[0]] += 1 new_train= [] for row in data.train: if counter[row[0]] > 5: new_train.append(row) data.train = new_train #Step 8.2: Formulate the preprocessing steps which have to be done textPreprocessing = []