Esempio n. 1
0
def clearScalars( trkFile1, outputFile ):
  '''
  Copy scalars from trkFile1 to trkFile2
  '''

  s = io.loadTrk( trkFile1 )
  tracks = s[0]
  origHeader = s[1]
  tracksHeader = numpy.copy( s[1] )

  newTracks = []

  for tCounter, t in enumerate( tracks ):

    tCoordinates = t[0]
    tScalars = t[1]
    tProperties = t[2]

    # clear scalars
    newTracks.append( ( tCoordinates, None, tProperties ) )

  # write trkFile2 with update scalars
  io.saveTrk( outputFile, newTracks, tracksHeader, None, True )

  c.info( 'Cleared scalars from ' + trkFile1 + ' and saved as ' + outputFile )
Esempio n. 2
0
def copyScalars( trkFile1, trkFile2, outputFile ):
  '''
  Copy scalars from trkFile1 to trkFile2
  '''

  s = io.loadTrk( trkFile1 )
  s2 = io.loadTrk( trkFile2 )
  tracks = s[0]
  tracks2 = s2[0]
  origHeader = s[1]
  origHeader2 = s2[1]
  tracksHeader = numpy.copy( s[1] )
  tracksHeader2 = numpy.copy( s2[1] )

  #if tracksHeader['n_count'] != tracksHeader2['n_count']:
  #  c.error( 'The track counts do not match!' )
  #  sys.exit( 2 )

  # now copy
  tracksHeader2['n_scalars'] = tracksHeader['n_scalars']
  tracksHeader2['scalar_name'] = tracksHeader['scalar_name']

  newTracks2 = []

  for tCounter, t in enumerate( tracks ):

    tCoordinates = t[0]
    tScalars = t[1]

    # copy scalars over
    #tracks2[tCounter][1] = numpy.copy( tScalars )
    newTracks2.append( ( tracks2[tCounter][0], tScalars[:], tracks2[tCounter][2] ) )

  # write trkFile2 with update scalars
  io.saveTrk( outputFile, newTracks2, tracksHeader2, None, True )

  c.info( 'Copied Scalars from ' + trkFile1 + ' to ' + trkFile2 + ' and saved as ' + outputFile )
Esempio n. 3
0
from _common import FNNDSCConsole as c
from _common import FNNDSCFileIO as io
from _common import FNNDSCUtil as u

import sys
import numpy

# ENTRYPOINT
if __name__ == "__main__":

    track = sys.argv[1]
    trackId = int(sys.argv[2])
    volume = sys.argv[3]

    s = io.loadTrk(track)
    tracks = s[0]
    origHeader = s[1]

    image = io.readImage(volume)
    imageHeader = image.header
    imageDimensions = image.shape[:3]
    imageSpacing = imageHeader.get_zooms()

    singleTrack = tracks[trackId]

    coords = singleTrack[0]

    valueSum = 0

    length = 0
    _last = None
Esempio n. 4
0
    def run(self, input, output, mode, verbose, jobs):

        if len(input) < 2:
            c.error("Please specify at least two *.trk files as input!")
            sys.exit(2)

        if os.path.exists(output):
            # abort if file already exists
            c.error("File " + str(output) + " already exists..")
            c.error("Aborting..")
            sys.exit(2)

        jobs = int(jobs)

        if jobs < 1 or jobs > 32:
            jobs = 1

        # load 'master'
        mTracks = io.loadTrk(input[0])

        # copy the tracks and the header from the 'master'
        c.info("Master is " + input[0])
        outputTracks = mTracks[0]
        c.info("Number of tracks: " + str(len(outputTracks)))
        header = mTracks[1]

        # remove the first input
        input.pop(0)

        if mode == "add":
            #
            # ADD
            #

            for i in input:
                iTracks = io.loadTrk(i)

                # add the tracks
                c.debug("Adding " + str(len(iTracks[0])) + " tracks from " + i + " to master..", verbose)
                outputTracks = TrackvisCalcLogic.add(outputTracks, iTracks[0])

            c.debug("Number of output tracks after final addition: " + str(len(outputTracks)), verbose)

        elif mode == "sub":
            #
            # SUB
            #

            c.debug("Using " + str(jobs) + " threads..", verbose)

            mergedOutputTracks = outputTracks[:]

            for i in input:
                iTracks = io.loadTrk(i)

                # subtract the tracks
                c.info("Subtracting " + i + " (" + str(len(iTracks[0])) + " tracks) from master..")

                #
                # THREADED COMPONENT
                #
                numberOfThreads = jobs
                c.info("Splitting master into " + str(jobs) + " pieces..")
                splittedOutputTracks = u.split_list(mergedOutputTracks, numberOfThreads)

                # list of threads
                t = [None] * numberOfThreads

                # list of alive flags
                a = [None] * numberOfThreads

                # list of tempFiles
                f = [None] * numberOfThreads

                for n in xrange(numberOfThreads):
                    # mark thread as alive
                    a[n] = True
                    # fire the thread and give it a filename based on the number
                    tmpFile = tempfile.mkstemp(".trk", "t_calc")[1]
                    f[n] = tmpFile
                    t[n] = Process(
                        target=TrackvisCalcLogic.sub,
                        args=(splittedOutputTracks[n][:], iTracks[0][:], tmpFile, verbose, "Thread-" + str(n + 1)),
                    )
                    c.info("Starting Thread-" + str(n + 1) + "...")
                    t[n].start()

                allDone = False

                while not allDone:

                    time.sleep(1)

                    for n in xrange(numberOfThreads):

                        a[n] = t[n].is_alive()

                    if not any(a):
                        # if no thread is alive
                        allDone = True

                #
                # END OF THREADED COMPONENT
                #
                c.info("All Threads done!")

                c.info("Merging output..")
                # now read all the created tempFiles and merge'em to one
                # first thread output is the master here
                tmpMaster = f[0]
                tMasterTracks = io.loadTrk(tmpMaster)
                for tmpFileNo in xrange(1, len(f)):
                    tTracks = io.loadTrk(f[tmpFileNo])

                    # add them
                    mergedOutputTracks = TrackvisCalcLogic.add(tMasterTracks[0], tTracks[0])

                c.info("Merging done!")

            # some stats
            c.info("Number of output tracks after final removal: " + str(len(mergedOutputTracks)))
            outputTracks = mergedOutputTracks

        # now save the outputTracks
        io.saveTrk(output, outputTracks, header)

        c.info("All done!")
Esempio n. 5
0
def makeMatrix(inputs, outputs, no_cortex):
    """
  Make 1/ADC, ADC, FA, FiberNumber, FiberLength, E1, E2, E3 connectivity matrices.
  """

    s = io.loadTrk(outputs["fibers_final"])
    tracks = s[0]
    header = s[1]

    scalarNames = header["scalar_name"].tolist()
    matrix = {}

    # check if the segmentation is mapped
    try:
        scalarNames.index("segmentation")
    except:
        c.error(Colors.RED)

    for s in scalarNames:

        if not s:
            continue

        print s

    return

    for i in inputs:

        if i == "fibers" or i == "segmentation" or i == "T1" or i == "b0":
            # we do not map these
            continue

    # for tCounter, t in enumerate( tracks ):

    try:
        labelIndex = scalarNames.index("segmentation")
        adcIndex = scalarNames.index("adc")
        faIndex = scalarNames.index("fa")
        e1Index = scalarNames.index("e1")
        e2Index = scalarNames.index("e2")
        e3Index = scalarNames.index("e3")
        lengthIndex = scalarNames.index("length")
    except:
        c.error("Not all scalars were found: aparc_aseg_endlabel, adc, fa, length, e1, e2, e3")
        sys.exit(2)

    m_fn = numpy.zeros([68, 68])
    m_fa = numpy.zeros([68, 68])
    m_adc = numpy.zeros([68, 68])
    m_adcinv = numpy.zeros([68, 68])
    m_len = numpy.zeros([68, 68])
    m_e1 = numpy.zeros([68, 68])
    m_e2 = numpy.zeros([68, 68])
    m_e3 = numpy.zeros([68, 68])

    fslabel_vol = [
        2012,
        2019,
        2032,
        2014,
        2020,
        2018,
        2027,
        2028,
        2003,
        2024,
        2017,
        2026,
        2002,
        2023,
        2010,
        2022,
        2031,
        2029,
        2008,
        2025,
        2005,
        2021,
        2011,
        2013,
        2007,
        2016,
        2006,
        2033,
        2009,
        2015,
        2001,
        2030,
        2034,
        2035,
        1012,
        1019,
        1032,
        1014,
        1020,
        1018,
        1027,
        1028,
        1003,
        1024,
        1017,
        1026,
        1002,
        1023,
        1010,
        1022,
        1031,
        1029,
        1008,
        1025,
        1005,
        1021,
        1011,
        1013,
        1007,
        1016,
        1006,
        1033,
        1009,
        1015,
        1001,
        1030,
        1034,
        1035,
    ]

    for tCounter, t in enumerate(tracks):

        tCoordinates = t[0]
        tScalars = t[1]

        fa = numpy.mean(tScalars[:, faIndex])
        adc = numpy.mean(tScalars[:, adcIndex])
        e1 = numpy.mean(tScalars[:, e1Index])
        e2 = numpy.mean(tScalars[:, e2Index])
        e3 = numpy.mean(tScalars[:, e3Index])
        len = tScalars[0, lengthIndex]

        firstLabel = tScalars[0, labelIndex]
        lastLabel = tScalars[-1, labelIndex]

        try:
            fIndex = fslabel_vol.index(firstLabel)
            lIndex = fslabel_vol.index(lastLabel)
        except:
            continue

        print "found", firstLabel, lastLabel

        m_fn[fIndex, lIndex] += 1
        m_fa[fIndex, lIndex] += fa
        m_adc[fIndex, lIndex] += adc
        m_e1[fIndex, lIndex] += e1
        m_e2[fIndex, lIndex] += e2
        m_e3[fIndex, lIndex] += e3
        m_adcinv[fIndex, lIndex] += 1 / adc
        m_len[fIndex, lIndex] += len

    # symmetrize matrices
    m_fn = m_fn + m_fn.T - numpy.diag(m_fn.diagonal())
    m_fa = m_fa + m_fa.T - numpy.diag(m_fa.diagonal())
    m_adc = m_adc + m_adc.T - numpy.diag(m_adc.diagonal())
    m_e1 = m_e1 + m_e1.T - numpy.diag(m_e1.diagonal())
    m_e2 = m_e2 + m_e2.T - numpy.diag(m_e2.diagonal())
    m_e3 = m_e3 + m_e3.T - numpy.diag(m_e3.diagonal())
    m_adcinv = m_adcinv + m_adcinv.T - numpy.diag(m_adcinv.diagonal())
    m_len = m_len + m_len.T - numpy.diag(m_len.diagonal())

    # normalize matrices
    m_fa[:] /= m_fn[:]
    m_adc[:] /= m_fn[:]
    m_e1[:] /= m_fn[:]
    m_e2[:] /= m_fn[:]
    m_e3[:] /= m_fn[:]
    m_adcinv[:] /= m_fn[:]
    m_len[:] /= m_fn[:]
    m_fa = numpy.nan_to_num(m_fa)
    m_e1 = numpy.nan_to_num(m_e1)
    m_e2 = numpy.nan_to_num(m_e2)
    m_e3 = numpy.nan_to_num(m_e3)
    m_adc = numpy.nan_to_num(m_adc)
    m_adcinv = numpy.nan_to_num(m_adcinv)
    m_len = numpy.nan_to_num(m_len)

    # save as .mat and .csv
    sio.savemat(
        outputDirectory + "fibmap_all_cMatrix.mat",
        {
            "m_fiberNumber": m_fn,
            "m_fa": m_fa,
            "m_adc": m_adc,
            "m_adcInverse": m_adcinv,
            "m_fiberLength": m_len,
            "m_e1": m_e1,
            "m_e2": m_e2,
            "m_e3": m_e3,
        },
    )

    numpy.savetxt(outputDirectory + "fibmap_fibernumber_cMatrix.csv", m_fn, delimiter=",")
    numpy.savetxt(outputDirectory + "fibmap_fa_cMatrix.csv", m_fa, delimiter=",")
    numpy.savetxt(outputDirectory + "fibmap_e1_cMatrix.csv", m_e1, delimiter=",")
    numpy.savetxt(outputDirectory + "fibmap_e2_cMatrix.csv", m_e2, delimiter=",")
    numpy.savetxt(outputDirectory + "fibmap_e3_cMatrix.csv", m_e3, delimiter=",")
    numpy.savetxt(outputDirectory + "fibmap_adc_cMatrix.csv", m_adc, delimiter=",")
    numpy.savetxt(outputDirectory + "fibmap_adcinv_cMatrix.csv", m_adcinv, delimiter=",")
    numpy.savetxt(outputDirectory + "fibmap_fiberlength_cMatrix.csv", m_len, delimiter=",")

    c.info("Connectivity matrices generated and stored.")
Esempio n. 6
0
save_image(img, volFile)

# trk file
fibers = []

# 2,5,6
# 3,5,7
# 2,6,7
# 8,7,3
# 9,5,4
points = np.array([[2, 5, 6], [3, 5, 7], [2, 6, 7], [8, 7, 3], [9, 5, 4]],
                  dtype=np.float32)

fibers.append((points, None, None))

io.saveTrk(trkFile, fibers, None, None, True)

# with fyborg
fyborg.fyborg(trkFile, mappedTrkFile, [fyborg.FyMapAction('test', volFile)])

# now validate
s = io.loadTrk(mappedTrkFile)
tracks = s[0]
origHeader = s[1]
scalars = tracks[0][1]
print scalars[0], '==', testArr[2][5][6]
print scalars[1], '==', testArr[3][5][7]
print scalars[2], '==', testArr[2][6][7]
print scalars[3], '==', testArr[8][7][3]
print scalars[4], '==', testArr[9][5][4]
Esempio n. 7
0
  def run( self, input, output, matrix, jobs ):
    '''
    '''

    if os.path.exists( output ):
      # abort if file already exists
      c.error( 'File ' + str( output ) + ' already exists..' )
      c.error( 'Aborting..' )
      sys.exit( 2 )

    if not os.path.isfile( matrix ):
      # abort if the matrix does not exist
      c.error( 'Matrix-File ' + str( matrix ) + ' does not exist..' )
      c.error( 'Aborting..' )
      sys.exit( 2 )

    jobs = int( jobs )

    if jobs < 1 or  jobs > 32:
      jobs = 1

    # read
    c.info( 'Loading ' + input + '..' )

    t = io.loadTrk( input )
    tracks = t[0]
    header = t[1]
    #.. copy the current header
    newHeader = numpy.copy( header )

    # print old matrix in header
    # 
    # WARNING: this matrix is actually never used by TrackVis (see email from Ruopeng).
    # We still modify it to keep it in sync with the transformations which we apply point wise.
    #
    if hasattr( header, 'vox_to_ras' ):
      oldMatrix = header['vox_to_ras']
      c.info( 'Old transformation matrix:' )
      c.info( '    ' + str( oldMatrix[0] ) )
      c.info( '    ' + str( oldMatrix[1] ) )
      c.info( '    ' + str( oldMatrix[2] ) )
      c.info( '    ' + str( oldMatrix[3] ) )

    #
    # load our transformation Matrix
    #
    newMatrix = numpy.loadtxt( matrix, float, '#', ' ' )


    #
    # THREADED COMPONENT
    #
    numberOfThreads = jobs
    c.info( 'Splitting the input into ' + str( jobs ) + ' pieces..' )
    splittedOutputTracks = u.split_list( tracks, numberOfThreads )

    # list of threads
    t = [None] * numberOfThreads

    # list of alive flags
    a = [None] * numberOfThreads

    # list of tempFiles
    f = [None] * numberOfThreads

    for n in xrange( numberOfThreads ):
      # mark thread as alive
      a[n] = True
      # fire the thread and give it a filename based on the number
      tmpFile = tempfile.mkstemp( '.trk', 't_transform' )[1]
      f[n] = tmpFile
      t[n] = Process( target=TrackvisTransformLogic.transform, args=( splittedOutputTracks[n][:], newMatrix, tmpFile, False, 'Thread-' + str( n + 1 ) ) )
      c.info( "Starting Thread-" + str( n + 1 ) + "..." )
      t[n].start()

    allDone = False

    while not allDone:

      time.sleep( 1 )

      for n in xrange( numberOfThreads ):

        a[n] = t[n].is_alive()

      if not any( a ):
        # if no thread is alive
        allDone = True

    #
    # END OF THREADED COMPONENT
    #
    c.info( "All Threads done!" )

    c.info( "Merging output.." )
    # now read all the created tempFiles and merge'em to one
    # first thread output is the master here
    tmpMaster = f[0]
    tMasterTracks = io.loadTrk( tmpMaster )
    for tmpFileNo in xrange( 1, len( f ) ):
      tTracks = io.loadTrk( f[tmpFileNo] )

      # add them
      tracks = TrackvisCalcLogic.add( tMasterTracks[0], tTracks[0] )

    c.info( "Merging done!" )

    #
    # replace the matrix in the header with a transformed one even if it will never be used by TrackVis
    #
    if hasattr( header, 'vox_to_ras' ):
      result = numpy.dot( oldMatrix, newMatrix )
      c.info( 'New transformation matrix:' )
      c.info( '    ' + str( result[0] ) )
      c.info( '    ' + str( result[1] ) )
      c.info( '    ' + str( result[2] ) )
      c.info( '    ' + str( result[3] ) )
      newHeader['vox_to_ras'] = result

    # write
    c.info( 'Saving ' + output + '..' )
    io.saveTrk( output, tracks, newHeader )

    c.info( 'All done!' )
Esempio n. 8
0

# trk file
fibers = []

# 2,5,6
# 3,5,7
# 2,6,7
# 8,7,3
# 9,5,4
points = np.array( [[2, 5, 6], [3, 5, 7], [2, 6, 7], [8, 7, 3], [9, 5, 4]], dtype=np.float32 )

fibers.append( ( points, None, None ) )

io.saveTrk( trkFile, fibers, None, None, True )

# with fyborg
fyborg.fyborg( trkFile, mappedTrkFile, [fyborg.FyMapAction( 'test', volFile )] )


# now validate
s = io.loadTrk( mappedTrkFile )
tracks = s[0]
origHeader = s[1]
scalars = tracks[0][1]
print scalars[0], '==', testArr[2][5][6]
print scalars[1], '==', testArr[3][5][7]
print scalars[2], '==', testArr[2][6][7]
print scalars[3], '==', testArr[8][7][3]
print scalars[4], '==', testArr[9][5][4]
Esempio n. 9
0
def validateMapping( volumefile, trkfile, radius=0, map_intermediate=True ):
  '''
  Check if a trk file has correctly mapped scalar values from a volume file.
  
  If radius is > 0 take it into account by looking for the most common value in a sphere
  around the original point. This only happens on start and end points so.
  
  If map_intermediate is active, also the points between end points are validated but never
  using the radius.
  
  Returns TRUE if everything is fine, FALSE if there were errors.
  '''
  # load the mapped trk file
  s = io.loadTrk( trkfile )

  volume = io.readImage( volumefile )
  imageHeader = volume.header
  image_size = volume.shape[:3]

  # grab the tracks
  tracks = s[0]

  # pad the image with zeros
  image = ap.pad( volume, radius, 'constant', constant_values=( 0 ) )

  # any errors?
  any_errors = False

  # incorporate spacing
  spacing = imageHeader.get_zooms()[:3]

  # .. and loop through them
  for t in tracks:

    points = t[0] # the points of this fiber track
    scalars = t[1] # the mapped scalars

    for index, p in enumerate( points ):

      current_point = [ int( a / b ) for a, b in zip( [p[0], p[1], p[2]], spacing )]

      #print 'ORIG', volume[current_point[0], current_point[1], current_point[2]]

      is_first_point = ( index == 0 )
      is_last_point = ( index == len( points ) - 1 )

      # if this is 
      if not map_intermediate and not is_first_point and not is_last_point:
        real_scalar = 0.0
      else:

        # here we check for the neighborhood if radius > 0
        if radius > 0 and ( is_first_point or is_last_point ):

          # neighborhood search!
          r = radius
          a, b, c = current_point

          # crop the image according to the neighborhood look-up
          # since we zero-padded the image, we don't need boundary checks here
          min_x = a - r
          max_x = a + r + 1
          min_y = b - r
          max_y = b + r + 1
          min_z = c - r
          max_z = c + r + 1
          cropped_image = numpy.asarray( image[min_x + r:max_x + r, min_y + r:max_y + r, min_z + r:max_z + r] )


          # create a sphere mask
          x, y, z = numpy.ogrid[0:2 * r + 1, 0:2 * r + 1, 0:2 * r + 1]
          mask = ( x - r ) ** 2 + ( y - r ) ** 2 + ( z - r ) ** 2 <= r * r # 3d sphere mask

          # apply the mask
          masked_container = cropped_image[mask]

          # throw away all zeros (0)
          masked_container = masked_container[numpy.nonzero( masked_container )]

          # find the most frequent label in the masked container
          from collections import Counter

          # by default, we use the original one
          mostFrequentLabel = volume[a, b, c]

          if len( masked_container ) != 0:
            counter = Counter( masked_container )
            all_labels = counter.most_common()
            best_match_label = counter.most_common( 1 )

            original_pos = [i for i, v in enumerate( all_labels ) if v[0] == mostFrequentLabel]

            if not original_pos or all_labels[original_pos[0]][1] != best_match_label[0][1]:
              # the original label appears less often as the new best_match_label
              # in this case, we use the new best matched label
              mostFrequentLabel = best_match_label[0][0]
              # we don't need an else here since the original label is already set

          real_scalar = mostFrequentLabel

        else:

          # simple mapping without radius incorporation and make sure we are inside the volume
          real_scalar = volume[min( current_point[0], image_size[0] - 1 ), min( current_point[1], image_size[1] - 1 ) , min( current_point[2], image_size[2] - 1 )]

      if type( scalars ) is types.NoneType:
        mapped_scalar = -1
      else:
        mapped_scalar = scalars[index][0]

      # now check if the mapped scalar from the trk file matches the real scalar
      compare = ( mapped_scalar == real_scalar )
      if compare:
        compare = Colors.GREEN + 'OK'
      else:
        compare = Colors.RED + 'WRONG!!!'
        any_errors = True

      print Colors.PURPLE + 'Probing ' + Colors.CYAN + str( current_point ) + Colors.PURPLE + ' for scalar.. SHOULD BE: ' + Colors.CYAN + str( real_scalar ) + Colors.PURPLE + ' WAS: ' + Colors.CYAN + str( mapped_scalar ) + Colors.PURPLE + ' ... ' + str( compare ) + Colors._CLEAR

  # return TRUE if everything went fine and FALSE if there were errors
  return not any_errors
Esempio n. 10
0
    def run(self, input, output, mode, verbose, jobs):

        if len(input) < 2:
            c.error('Please specify at least two *.trk files as input!')
            sys.exit(2)

        if os.path.exists(output):
            # abort if file already exists
            c.error('File ' + str(output) + ' already exists..')
            c.error('Aborting..')
            sys.exit(2)

        jobs = int(jobs)

        if jobs < 1 or jobs > 32:
            jobs = 1

        # load 'master'
        mTracks = io.loadTrk(input[0])

        # copy the tracks and the header from the 'master'
        c.info('Master is ' + input[0])
        outputTracks = mTracks[0]
        c.info('Number of tracks: ' + str(len(outputTracks)))
        header = mTracks[1]

        # remove the first input
        input.pop(0)

        if mode == 'add':
            #
            # ADD
            #

            for i in input:
                iTracks = io.loadTrk(i)

                # add the tracks
                c.debug(
                    'Adding ' + str(len(iTracks[0])) + ' tracks from ' + i +
                    ' to master..', verbose)
                outputTracks = TrackvisCalcLogic.add(outputTracks, iTracks[0])

            c.debug(
                'Number of output tracks after final addition: ' +
                str(len(outputTracks)), verbose)

        elif mode == 'sub':
            #
            # SUB
            #

            c.debug('Using ' + str(jobs) + ' threads..', verbose)

            mergedOutputTracks = outputTracks[:]

            for i in input:
                iTracks = io.loadTrk(i)

                # subtract the tracks
                c.info('Subtracting ' + i + ' (' + str(len(iTracks[0])) +
                       ' tracks) from master..')

                #
                # THREADED COMPONENT
                #
                numberOfThreads = jobs
                c.info('Splitting master into ' + str(jobs) + ' pieces..')
                splittedOutputTracks = u.split_list(mergedOutputTracks,
                                                    numberOfThreads)

                # list of threads
                t = [None] * numberOfThreads

                # list of alive flags
                a = [None] * numberOfThreads

                # list of tempFiles
                f = [None] * numberOfThreads

                for n in xrange(numberOfThreads):
                    # mark thread as alive
                    a[n] = True
                    # fire the thread and give it a filename based on the number
                    tmpFile = tempfile.mkstemp('.trk', 't_calc')[1]
                    f[n] = tmpFile
                    t[n] = Process(target=TrackvisCalcLogic.sub,
                                   args=(splittedOutputTracks[n][:],
                                         iTracks[0][:], tmpFile, verbose,
                                         'Thread-' + str(n + 1)))
                    c.info("Starting Thread-" + str(n + 1) + "...")
                    t[n].start()

                allDone = False

                while not allDone:

                    time.sleep(1)

                    for n in xrange(numberOfThreads):

                        a[n] = t[n].is_alive()

                    if not any(a):
                        # if no thread is alive
                        allDone = True

                #
                # END OF THREADED COMPONENT
                #
                c.info("All Threads done!")

                c.info("Merging output..")
                # now read all the created tempFiles and merge'em to one
                # first thread output is the master here
                tmpMaster = f[0]
                tMasterTracks = io.loadTrk(tmpMaster)
                for tmpFileNo in xrange(1, len(f)):
                    tTracks = io.loadTrk(f[tmpFileNo])

                    # add them
                    mergedOutputTracks = TrackvisCalcLogic.add(
                        tMasterTracks[0], tTracks[0])

                c.info("Merging done!")

            # some stats
            c.info('Number of output tracks after final removal: ' +
                   str(len(mergedOutputTracks)))
            outputTracks = mergedOutputTracks

        # now save the outputTracks
        io.saveTrk(output, outputTracks, header)

        c.info('All done!')
Esempio n. 11
0
from _common import FNNDSCFileIO as io
from _common import FNNDSCUtil as u

import sys
import numpy



# ENTRYPOINT
if __name__ == "__main__":

  track = sys.argv[1]
  trackId = int( sys.argv[2] )
  volume = sys.argv[3]

  s = io.loadTrk( track )
  tracks = s[0]
  origHeader = s[1]


  image = io.readImage( volume )
  imageHeader = image.header
  imageDimensions = image.shape[:3]
  imageSpacing = imageHeader.get_zooms()

  singleTrack = tracks[trackId]

  coords = singleTrack[0]

  valueSum = 0
Esempio n. 12
0
def fyborg( trkFile, outputTrkFile, actions, *args ):

  if not actions:
    c.error( "We gotta do something.." )
    return

  showDebug = 'debug' in args

  singleThread = 'singlethread' in args

  c.debug( "trkFile:" + str( trkFile ), showDebug )
  c.debug( "outputTrkFile:" + str( outputTrkFile ), showDebug )
  c.debug( "args:" + str( args ), showDebug )



  # load trk file
  s = io.loadTrk( trkFile )
  tracks = s[0]
  origHeader = s[1]
  tracksHeader = numpy.copy( s[1] )
  numberOfScalars = origHeader['n_scalars']
  scalars = origHeader['scalar_name'].tolist()
  numberOfTracks = origHeader['n_count']

  # show some file informations
  printTrkInfo( tracksHeader, trkFile )

  # grab the scalarNames
  scalarNames = []
  for a in actions:
    if a.scalarName() != FyAction.NoScalar:
      scalarNames.append( a.scalarName() )

  # increase the number of scalars
  tracksHeader['n_scalars'] += len( scalarNames )

  # .. attach the new scalar names
  for i in range( len( scalarNames ) ):
    tracksHeader['scalar_name'][numberOfScalars + i] = scalarNames[i]

  #
  # THREADED COMPONENT
  #
  if singleThread:
    numberOfThreads = 1
  else:
    numberOfThreads = multiprocessing.cpu_count()
  c.info( 'Splitting master into ' + str( numberOfThreads ) + ' pieces..' )
  splittedOutputTracks = u.split_list( tracks[:], numberOfThreads )

  # list of threads
  t = [None] * numberOfThreads

  # list of alive flags
  a = [None] * numberOfThreads

  # list of tempFiles
  f = [None] * numberOfThreads

  for n in xrange( numberOfThreads ):
    # configure actions
    __actions = []
    for act in actions:
      __actions.append( act )

    # mark thread as alive
    a[n] = True
    # fire the thread and give it a filename based on the number
    tmpFile = tempfile.mkstemp( '.trk', 'fyborg' )[1]
    f[n] = tmpFile
    t[n] = Process( target=fyborgLooper_, args=( splittedOutputTracks[n][:], tracksHeader, tmpFile, __actions, showDebug, n + 1 ) )
    c.info( "Starting Thread-" + str( n + 1 ) + "..." )
    t[n].start()

  allDone = False

  while not allDone:

    time.sleep( 1 )

    for n in xrange( numberOfThreads ):

      a[n] = t[n].is_alive()

    if not any( a ):
      # if no thread is alive
      allDone = True

  #
  # END OF THREADED COMPONENT
  #
  c.info( "All Threads done!" )

  #
  # Merging stage
  #
  c.info( "Merging tracks.." )

  outputTracks = []
  # now read all the created tempFiles and merge'em to one
  for tmpFileNo in xrange( 0, len( f ) ):
    tTracks = io.loadTrk( f[tmpFileNo] )

    # add them
    outputTracks.extend( tTracks[0] )

  c.info( "Merging done!" )

  io.saveTrk( outputTrkFile, outputTracks, tracksHeader, None, True )

  c.info( "All done!" )