def ref_date_file(inFile, ref_date, outFile=None): '''Change input file reference date to a different one.''' if not outFile: outFile = os.path.splitext(inFile)[0]+'_refDate.h5' # Input file type atr = readfile.read_attribute(inFile) k = atr['FILE_TYPE'] if not k in ['timeseries']: print('Input file is '+k+', only timeseries is supported.') return None # Input reference date h5 = h5py.File(inFile, 'r') date_list = sorted(h5[k].keys()) h5.close() date_num = len(date_list) try: ref_date_orig = atr['ref_date'] except: ref_date_orig = date_list[0] ref_date = ptime.yyyymmdd(ref_date) print('input reference date: '+ref_date) if not ref_date in date_list: print('Input reference date was not found!\nAll dates available: '+str(date_list)) return None if ref_date == ref_date_orig: print('Same reference date chosen as existing reference date.') print('Copy %s to %s' % (inFile, outFile)) shutil.copy2(inFile, outFile) return outFile # Referencing in time h5 = h5py.File(inFile, 'r') ref_data = h5[k].get(ref_date)[:] print('writing >>> '+outFile) h5out = h5py.File(outFile,'w') group = h5out.create_group(k) prog_bar = ptime.progress_bar(maxValue=date_num) for i in range(date_num): date = date_list[i] data = h5[k].get(date)[:] dset = group.create_dataset(date, data=data-ref_data, compression='gzip') prog_bar.update(i+1, suffix=date) prog_bar.close() h5.close() ## Update attributes atr = ref_date_attribute(atr, ref_date, date_list) for key,value in atr.items(): group.attrs[key] = value h5out.close() return outFile
def main(argv): try: timeseries_file = argv[0] except: usage() ; sys.exit(1) # Basic info atr = readfile.read_attribute(timeseries_file) k = atr['FILE_TYPE'] length = int(atr['FILE_LENGTH']) width = int(atr['WIDTH']) ##### Read time-series print("loading time series: " + timeseries_file) h5 = h5py.File(timeseries_file) date_list = sorted(h5[k].keys()) date_num = len(date_list) pixel_num = length*width tbase = np.array(ptime.date_list2tbase(date_list)[0], np.float32) prog_bar = ptime.progress_bar(maxValue=date_num) timeseries = np.zeros((date_num, pixel_num),np.float32) for i in range(date_num): date = date_list[i] d = h5[k].get(date)[:] timeseries[i,:] = d.flatten(0) prog_bar.update(i+1, suffix=date) prog_bar.close() del d h5.close() ##### Calculate 1st and 2nd temporal derivatives print("calculating temporal 1st derivative ... ") timeseries_1st = np.zeros((date_num-1,pixel_num),np.float32) for i in range(date_num-1): timeseries_1st[i][:] = timeseries[i+1][:] - timeseries[i][:] print("calculating temporal 2nd derivative") timeseries_2nd = np.zeros((date_num-2,pixel_num),np.float32) for i in range(date_num-2): timeseries_2nd[i][:] = timeseries_1st[i+1][:] - timeseries_1st[i][:] ##### Write 1st and 2nd temporal derivatives outfile1 = os.path.splitext(timeseries_file)[0]+'_1stDerivative.h5' print('writing >>> '+outfile1) h5out = h5py.File(outfile1, 'w') group = h5out.create_group(k) prog_bar = ptime.progress_bar(maxValue=date_num-1) for i in range(date_num-1): date = date_list[i+1] dset = group.create_dataset(date, data=np.reshape(timeseries_1st[i][:],[length,width]), compression='gzip') prog_bar.update(i+1, suffix=date) for key,value in atr.items(): group.attrs[key] = value prog_bar.close() h5out.close() outfile2 = os.path.splitext(timeseries_file)[0]+'_2ndDerivative.h5' print('writing >>> '+outfile2) h5out = h5py.File(outfile2, 'w') group = h5out.create_group(k) prog_bar = ptime.progress_bar(maxValue=date_num-2) for i in range(date_num-2): date = date_list[i+2] dset = group.create_dataset(date, data=np.reshape(timeseries_2nd[i][:],[length,width]), compression='gzip') prog_bar.update(i+1, suffix=date) for key,value in atr.items(): group.attrs[key] = value prog_bar.close() h5out.close() print('Done.') return outfile1, outfile2
def modify_file_date12_list(File, date12_to_rmv, mark_attribute=False, outFile=None): '''Update multiple group hdf5 file using date12 to remove Inputs: File - multi_group HDF5 file, i.e. unwrapIfgram.h5, coherence.h5 date12_to_rmv - list of string indicating interferograms in YYMMDD-YYMMDD format mark_attribute- bool, if True, change 'drop_ifgram' attribute only; otherwise, write resutl to a new file outFile - string, output file name Output: outFile - string, output file name, if mark_attribute=True, outFile = File ''' k = readfile.read_attribute(File)['FILE_TYPE'] print( '----------------------------------------------------------------------------' ) print('file: ' + File) if mark_attribute: print( "set drop_ifgram to 'yes' for all interferograms to remove, and 'no' for all the others." ) h5 = h5py.File(File, 'r+') ifgram_list = sorted(h5[k].keys()) for ifgram in ifgram_list: if h5[k][ifgram].attrs['DATE12'] in date12_to_rmv: h5[k][ifgram].attrs['drop_ifgram'] = 'yes' else: h5[k][ifgram].attrs['drop_ifgram'] = 'no' h5.close() outFile = File else: date12_orig = pnet.get_date12_list(File) date12_to_write = sorted(list(set(date12_orig) - set(date12_to_rmv))) print('number of interferograms in file : ' + str(len(date12_orig))) print('number of interferograms to keep/write: ' + str(len(date12_to_write))) print('list of interferograms to keep/write: ') print(date12_to_write) date12Num = len(date12_to_write) if not outFile: outFile = 'Modified_' + os.path.basename(File) print('writing >>> ' + outFile) h5out = h5py.File(outFile, 'w') gg = h5out.create_group(k) h5 = h5py.File(File, 'r') igramList = sorted(h5[k].keys()) date12_list = ptime.list_ifgram2date12(igramList) prog_bar = ptime.progress_bar(maxValue=date12Num, prefix='writing: ') for i in range(date12Num): date12 = date12_to_write[i] idx = date12_orig.index(date12) igram = igramList[idx] data = h5[k][igram].get(igram)[:] group = gg.create_group(igram) dset = group.create_dataset(igram, data=data, compression='gzip') for key, value in h5[k][igram].attrs.items(): group.attrs[key] = value group.attrs['drop_ifgram'] = 'no' prog_bar.update(i + 1, suffix=date12_list[i]) prog_bar.close() h5.close() h5out.close() print('finished writing >>> ' + outFile) return outFile
def subset_file(File, subset_dict_input, outFile=None): '''Subset file with Inputs: File : str, path/name of file outFile : str, path/name of output file subset_dict : dict, subsut parameter, including the following items: subset_x : list of 2 int, subset in x direction, default=None subset_y : list of 2 int, subset in y direction, default=None subset_lat : list of 2 float, subset in lat direction, default=None subset_lon : list of 2 float, subset in lon direction, default=None fill_value : float, optional. filled value for area outside of data coverage. default=None None/not-existed to subset within data coverage only. tight : bool, tight subset or not, for lookup table file, i.e. geomap*.trans Outputs: outFile : str, path/name of output file; outFile = 'subset_'+File, if File is in current directory; outFile = File, if File is not in the current directory. ''' # Input File Info try: atr_dict = readfile.read_attribute(File) except: return None width = int(atr_dict['WIDTH']) length = int(atr_dict['FILE_LENGTH']) k = atr_dict['FILE_TYPE'] print('subset ' + k + ' file: ' + File + ' ...') subset_dict = subset_dict_input.copy() # Read Subset Inputs into 4-tuple box in pixel and geo coord pix_box, geo_box = subset_input_dict2box(subset_dict, atr_dict) # if fill_value exists and not None, subset data and fill assigned value for area out of its coverage. # otherwise, re-check subset to make sure it's within data coverage and initialize the matrix with np.nan outfill = False if 'fill_value' in list(subset_dict.keys()) and subset_dict['fill_value']: outfill = True else: outfill = False if not outfill: pix_box = check_box_within_data_coverage(pix_box, atr_dict) subset_dict['fill_value'] = np.nan geo_box = box_pixel2geo(pix_box, atr_dict) data_box = (0, 0, width, length) print('data range in y/x: ' + str(data_box)) print('subset range in y/x: ' + str(pix_box)) print('data range in lat/lon: ' + str(box_pixel2geo(data_box, atr_dict))) print('subset range in lat/lon: ' + str(geo_box)) if pix_box == data_box: print('Subset range == data coverage, no need to subset. Skip.') return File # Calculate Subset/Overlap Index pix_box4data, pix_box4subset = get_box_overlap_index(data_box, pix_box) ########################### Data Read and Write ###################### # Output File Name if not outFile: if os.getcwd() == os.path.dirname(os.path.abspath(File)): if 'tight' in list(subset_dict.keys()) and subset_dict['tight']: outFile = os.path.splitext( File)[0] + '_tight' + os.path.splitext(File)[1] else: outFile = 'subset_' + os.path.basename(File) else: outFile = os.path.basename(File) print('writing >>> ' + outFile) ##### Multiple Dataset File if k in ['timeseries', 'interferograms', 'wrapped', 'coherence']: ##### Open Input File h5file = h5py.File(File, 'r') epochList = sorted(h5file[k].keys()) epochNum = len(epochList) if k in multi_dataset_hdf5_file: print('number of acquisitions: ' + str(epochNum)) else: print('number of interferograms: ' + str(epochNum)) ##### Open Output File h5out = h5py.File(outFile) group = h5out.create_group(k) prog_bar = ptime.progress_bar(maxValue=epochNum) ## Loop if k == 'timeseries': for i in range(epochNum): epoch = epochList[i] dset = h5file[k].get(epoch) data_overlap = dset[pix_box4data[1]:pix_box4data[3], pix_box4data[0]:pix_box4data[2]] data = np.ones( (pix_box[3] - pix_box[1], pix_box[2] - pix_box[0])) * subset_dict['fill_value'] data[pix_box4subset[1]:pix_box4subset[3], pix_box4subset[0]:pix_box4subset[2]] = data_overlap dset = group.create_dataset(epoch, data=data, compression='gzip') prog_bar.update(i + 1, suffix=epoch) atr_dict = subset_attribute(atr_dict, pix_box) for key, value in atr_dict.items(): group.attrs[key] = value elif k in ['interferograms', 'wrapped', 'coherence']: date12_list = ptime.list_ifgram2date12(epochList) for i in range(epochNum): epoch = epochList[i] dset = h5file[k][epoch].get(epoch) atr_dict = h5file[k][epoch].attrs data_overlap = dset[pix_box4data[1]:pix_box4data[3], pix_box4data[0]:pix_box4data[2]] data = np.ones( (pix_box[3] - pix_box[1], pix_box[2] - pix_box[0])) * subset_dict['fill_value'] data[pix_box4subset[1]:pix_box4subset[3], pix_box4subset[0]:pix_box4subset[2]] = data_overlap atr_dict = subset_attribute(atr_dict, pix_box, print_msg=False) gg = group.create_group(epoch) dset = gg.create_dataset(epoch, data=data, compression='gzip') for key, value in atr_dict.items(): gg.attrs[key] = value prog_bar.update(i + 1, suffix=date12_list[i]) ##### Single Dataset File elif k in ['.jpeg', '.jpg', '.png', '.ras', '.bmp']: data, atr_dict = readfile.read(File, pix_box) atr_dict = subset_attribute(atr_dict, pix_box) writefile.write(data, atr_dict, outFile) elif k == '.trans': rg_overlap, az_overlap, atr_dict = readfile.read(File, pix_box4data) rg = np.ones((pix_box[3] - pix_box[1], pix_box[2] - pix_box[0])) * subset_dict['fill_value'] rg[pix_box4subset[1]:pix_box4subset[3], pix_box4subset[0]:pix_box4subset[2]] = rg_overlap az = np.ones((pix_box[3] - pix_box[1], pix_box[2] - pix_box[0])) * subset_dict['fill_value'] az[pix_box4subset[1]:pix_box4subset[3], pix_box4subset[0]:pix_box4subset[2]] = az_overlap atr_dict = subset_attribute(atr_dict, pix_box) writefile.write(rg, az, atr_dict, outFile) else: data_overlap, atr_dict = readfile.read(File, pix_box4data) data = np.ones((pix_box[3] - pix_box[1], pix_box[2] - pix_box[0])) * subset_dict['fill_value'] data[pix_box4subset[1]:pix_box4subset[3], pix_box4subset[0]:pix_box4subset[2]] = data_overlap atr_dict = subset_attribute(atr_dict, pix_box) writefile.write(data, atr_dict, outFile) ##### End Cleaning try: prog_bar.close() h5file.close() h5out.close() except: pass return outFile
def main(argv): inps = cmdLineParse() ##### Check default input arguments # default output filename if not inps.outfile: inps.outfile = os.path.splitext( inps.timeseries_file)[0] + '_tropHgt.h5' # Basic info atr = readfile.read_attribute(inps.timeseries_file) k = atr['FILE_TYPE'] length = int(atr['FILE_LENGTH']) width = int(atr['WIDTH']) pix_num = length * width # default DEM file if not inps.dem_file: if 'X_FIRST' in list(atr.keys()): inps.dem_file = ['demGeo_tight.h5', 'demGeo.h5'] else: inps.dem_file = ['demRadar.h5'] try: inps.dem_file = ut.get_file_list(inps.dem_file)[0] except: inps.dem_file = None sys.exit('ERROR: No DEM file found!') # default Mask file if not inps.mask_file: if 'X_FIRST' in list(atr.keys()): inps.mask_file = 'geo_maskTempCoh.h5' else: inps.mask_file = 'maskTempCoh.h5' if not os.path.isfile(inps.mask_file): inps.mask_file = None sys.exit('ERROR: No mask file found!') ##### Read Mask print('reading mask from file: ' + inps.mask_file) mask = readfile.read(inps.mask_file)[0].flatten(1) ndx = mask != 0 msk_num = np.sum(ndx) print('total pixel number: %d' % pix_num) print('estimating using pixel number: %d' % msk_num) ##### Read DEM print('read DEM from file: ' + inps.dem_file) dem = readfile.read(inps.dem_file)[0] ref_y = int(atr['ref_y']) ref_x = int(atr['ref_x']) dem -= dem[ref_y, ref_x] print('considering the incidence angle of each pixel ...') inc_angle = ut.incidence_angle(atr, dimension=2) dem *= 1.0 / np.cos(inc_angle * np.pi / 180.0) ##### Design matrix for elevation v.s. phase dem = dem.flatten(1) if inps.poly_order == 1: A = np.vstack((dem[ndx], np.ones(msk_num))).T B = np.vstack((dem, np.ones(pix_num))).T elif inps.poly_order == 2: A = np.vstack((dem[ndx]**2, dem[ndx], np.ones(msk_num))).T B = np.vstack((dem**2, dem, np.ones(pix_num))).T elif inps.poly_order == 3: A = np.vstack((dem[ndx]**3, dem[ndx]**2, dem[ndx], np.ones(msk_num))).T B = np.vstack((dem**3, dem**2, dem, np.ones(pix_num))).T print('polynomial order: %d' % inps.poly_order) A_inv = np.linalg.pinv(A) ##### Calculate correlation coefficient print( 'Estimating the tropospheric effect between the differences of the subsequent epochs and DEM' ) h5 = h5py.File(inps.timeseries_file) date_list = sorted(h5[k].keys()) date_num = len(date_list) print('number of acquisitions: ' + str(date_num)) try: ref_date = atr['ref_date'] except: ref_date = date_list[0] print('----------------------------------------------------------') print('correlation of DEM with each time-series epoch:') corr_array = np.zeros(date_num) par_dict = {} for i in range(date_num): date = date_list[i] if date == ref_date: cc = 0.0 par = np.zeros(inps.poly_order + 1) else: data = h5[k].get(date)[:].flatten(1) C = np.zeros((2, msk_num)) C[0, :] = dem[ndx] C[1, :] = data[ndx] cc = np.corrcoef(C)[0, 1] corr_array[i] = cc if inps.threshold and np.abs(cc) < inps.threshold: par = np.zeros(inps.poly_order + 1) else: par = np.dot(A_inv, data[ndx]) print('%s: %.2f' % (date, cc)) par_dict[date] = par average_phase_height_corr = np.nansum(np.abs(corr_array)) / (date_num - 1) print('----------------------------------------------------------') print('Average Correlation of DEM with time-series epochs: %.2f' % average_phase_height_corr) # Correlation of DEM with Difference of subsequent epochs (Not used for now) corr_diff_dict = {} par_diff_dict = {} for i in range(date_num - 1): date1 = date_list[i] date2 = date_list[i + 1] date12 = date1 + '-' + date2 data1 = h5[k].get(date1)[:].flatten(1) data2 = h5[k].get(date2)[:].flatten(1) data_diff = data2 - data1 C_diff = np.zeros((2, msk_num)) C_diff[0, :] = dem[ndx] C_diff[1, :] = data_diff[ndx] cc_diff = np.corrcoef(C_diff)[0, 1] corr_diff_dict[date12] = cc_diff par = np.dot(A_inv, data_diff[ndx]) par_diff_dict[date12] = par ##### Correct and write time-series file print('----------------------------------------------------------') print('removing the stratified tropospheric delay from each epoch') print('writing >>> ' + inps.outfile) h5out = h5py.File(inps.outfile, 'w') group = h5out.create_group(k) prog_bar = ptime.progress_bar(maxValue=date_num) for i in range(date_num): date = date_list[i] data = h5[k].get(date)[:] if date != ref_date: par = par_dict[date] trop_delay = np.reshape(np.dot(B, par), [width, length]).T trop_delay -= trop_delay[ref_y, ref_x] data -= trop_delay dset = group.create_dataset(date, data=data, compression='gzip') prog_bar.update(i + 1, suffix=date) for key, value in atr.items(): group.attrs[key] = value prog_bar.close() h5out.close() h5.close() print('Done.') return inps.outfile
def remove_surface(File, surf_type, maskFile=None, outFile=None, ysub=None): start = time.time() atr = readfile.read_attribute(File) # Output File Name if not outFile: outFile = os.path.splitext( File)[0] + '_' + surf_type + os.path.splitext(File)[1] if maskFile: Mask = readfile.read(maskFile)[0] print('read mask file: ' + maskFile) else: Mask = np.ones((int(atr['FILE_LENGTH']), int(atr['WIDTH']))) print('use mask of the whole area') ##### Input File Info atr = readfile.read_attribute(File) k = atr['FILE_TYPE'] print('Input file is ' + k) print('remove ramp type: ' + surf_type) ## Multiple Datasets File if k in ['interferograms', 'coherence', 'wrapped', 'timeseries']: h5file = h5py.File(File, 'r') epochList = sorted(h5file[k].keys()) epoch_num = len(epochList) prog_bar = ptime.progress_bar(maxValue=epoch_num) h5flat = h5py.File(outFile, 'w') group = h5flat.create_group(k) print('writing >>> ' + outFile) if k in ['timeseries']: print('number of acquisitions: ' + str(len(epochList))) for i in range(epoch_num): epoch = epochList[i] data = h5file[k].get(epoch)[:] if not ysub: data_n, ramp = remove_data_surface(data, Mask, surf_type) else: data_n = remove_data_multiple_surface(data, Mask, surf_type, ysub) dset = group.create_dataset(epoch, data=data_n, compression='gzip') prog_bar.update(i + 1, suffix=epoch) for key, value in h5file[k].attrs.items(): group.attrs[key] = value elif k in ['interferograms', 'wrapped', 'coherence']: print('number of interferograms: ' + str(len(epochList))) date12_list = ptime.list_ifgram2date12(epochList) for i in range(epoch_num): epoch = epochList[i] data = h5file[k][epoch].get(epoch)[:] if not ysub: data_n, ramp = remove_data_surface(data, Mask, surf_type) else: data_n = remove_data_multiple_surface(data, Mask, surf_type, ysub) gg = group.create_group(epoch) dset = gg.create_dataset(epoch, data=data_n, compression='gzip') for key, value in h5file[k][epoch].attrs.items(): gg.attrs[key] = value prog_bar.update(i + 1, suffix=date12_list[i]) ## Single Dataset File else: data, atr = readfile.read(File) print('Removing ' + surf_type + ' from ' + k) if not ysub: data_n, ramp = remove_data_surface(data, Mask, surf_type) else: data_n = remove_data_multiple_surface(data, Mask, surf_type, ysub) print('writing >>> ' + outFile) writefile.write(data_n, atr, outFile) try: h5file.close() h5flat.close() prog_bar.close() except: pass print('Remove ' + surf_type + ' took ' + str(time.time() - start) + ' secs') return outFile
def geocode_file_with_geo_lut(fname, lut_file=None, method='nearest', fill_value=np.nan, fname_out=None): '''Geocode file using ROI_PAC/Gamma lookup table file. Related module: scipy.interpolate.RegularGridInterpolator Inputs: fname : string, file to be geocoded lut_file : string, optional, lookup table file genereated by ROIPAC or Gamma i.e. geomap_4rlks.trans from ROI_PAC sim_150911-150922.UTM_TO_RDC from Gamma method : string, optional, interpolation/resampling method, supporting nearest, linear fill_value : value used for points outside of the interpolation domain. If None, values outside the domain are extrapolated. fname_out : string, optional, output geocoded filename Output: fname_out : string, optional, output geocoded filename ''' start = time.time() ## Default Inputs and outputs if not fname_out: fname_out = 'geo_' + fname # Default lookup table file: atr_rdr = readfile.read_attribute(fname) if not lut_file: if atr_rdr['INSAR_PROCESSOR'] == 'roipac': lut_file = ['geomap*lks_tight.trans', 'geomap*lks.trans'] elif atr_rdr['INSAR_PROCESSOR'] == 'gamma': lut_file = ['sim*_tight.UTM_TO_RDC', 'sim*.UTM_TO_RDC'] try: lut_file = ut.get_file_list(lut_file)[0] except: lut_file = None if not lut_file: sys.exit( 'ERROR: No lookup table file found! Can not geocoded without it.') ## Original coordinates: row/column number in radar file print('------------------------------------------------------') print('geocoding file: ' + fname) len_rdr = int(atr_rdr['FILE_LENGTH']) wid_rdr = int(atr_rdr['WIDTH']) pts_rdr = (np.arange(len_rdr), np.arange(wid_rdr)) ## New coordinates: data value in lookup table print('reading lookup table file: ' + lut_file) rg, az, atr_lut = readfile.read(lut_file) len_geo = int(atr_lut['FILE_LENGTH']) wid_geo = int(atr_lut['WIDTH']) # adjustment if input radar file has been subseted. if 'subset_x0' in list(atr_rdr.keys()): x0 = float(atr_rdr['subset_x0']) y0 = float(atr_rdr['subset_y0']) rg -= x0 az -= y0 print( '\tinput radar coord file has been subsetted, adjust lookup table value' ) # extract pixels only available in radar file (get ride of invalid corners) idx = (az > 0.0) * (az <= len_rdr) * (rg > 0.0) * (rg <= wid_rdr) pts_geo = np.hstack((az[idx].reshape(-1, 1), rg[idx].reshape(-1, 1))) del az, rg print('geocoding using scipy.interpolate.RegularGridInterpolator ...') data_geo = np.empty((len_geo, wid_geo)) * fill_value k = atr_rdr['FILE_TYPE'] ##### Multiple Dataset File if k in multi_group_hdf5_file + multi_dataset_hdf5_file: h5 = h5py.File(fname, 'r') epoch_list = sorted(h5[k].keys()) epoch_num = len(epoch_list) prog_bar = ptime.progress_bar(maxValue=epoch_num) h5out = h5py.File(fname_out, 'w') group = h5out.create_group(k) print('writing >>> ' + fname_out) if k == 'timeseries': print('number of acquisitions: ' + str(epoch_num)) for i in range(epoch_num): date = epoch_list[i] data = h5[k].get(date)[:] RGI_func = RGI(pts_rdr, data, method, bounds_error=False, fill_value=fill_value) data_geo.fill(fill_value) data_geo[idx] = RGI_func(pts_geo) dset = group.create_dataset(date, data=data_geo, compression='gzip') prog_bar.update(i + 1, suffix=date) prog_bar.close() print('update attributes') atr = geocode_attribute_with_geo_lut(atr_rdr, atr_lut) for key, value in atr.items(): group.attrs[key] = value elif k in ['interferograms', 'wrapped', 'coherence']: print('number of interferograms: ' + str(epoch_num)) date12_list = ptime.list_ifgram2date12(epoch_list) for i in range(epoch_num): ifgram = epoch_list[i] data = h5[k][ifgram].get(ifgram)[:] RGI_func = RGI(pts_rdr, data, method, bounds_error=False, fill_value=fill_value) data_geo.fill(fill_value) data_geo[idx] = RGI_func(pts_geo) gg = group.create_group(ifgram) dset = gg.create_dataset(ifgram, data=data_geo, compression='gzip') atr = geocode_attribute_with_geo_lut(h5[k][ifgram].attrs, atr_lut, print_msg=False) for key, value in atr.items(): gg.attrs[key] = value prog_bar.update(i + 1, suffix=date12_list[i]) h5.close() h5out.close() ##### Single Dataset File else: print('reading ' + fname) data = readfile.read(fname)[0] RGI_func = RGI(pts_rdr, data, method, bounds_error=False, fill_value=fill_value) data_geo.fill(fill_value) data_geo[idx] = RGI_func(pts_geo) print('update attributes') atr = geocode_attribute_with_geo_lut(atr_rdr, atr_lut) print('writing >>> ' + fname_out) writefile.write(data_geo, atr, fname_out) del data_geo s = time.time() - start m, s = divmod(s, 60) h, m = divmod(m, 60) print('Time used: %02d hours %02d mins %02d secs' % (h, m, s)) return fname_out
def unwrap_error_correction_bridging(ifgram_file, mask_file, y_list, x_list, ramp_type='plane',\ ifgram_cor_file=None, save_cor_deramp_file=False): '''Unwrapping error correction with bridging. Inputs: ifgram_file : string, name/path of interferogram(s) to be corrected mask_file : string, name/path of mask file to mark different patches y/x_list : list of int, bonding points in y/x ifgram_cor_file : string, optional, output file name save_cor_deramp_file : bool, optional Output: ifgram_cor_file Example: y_list = [235, 270, 350, 390] x_list = [880, 890, 1200, 1270] unwrap_error_correction_bridging('unwrapIfgram.h5', 'mask_all.h5', y_list, x_list, 'quadratic') ''' ##### Mask and Ramp mask = readfile.read(mask_file)[0] ramp_mask = mask == 1 print('estimate phase ramp during the correction') print('ramp type: '+ramp_type) ##### Bridge Info # Check for i in range(len(x_list)): if mask[y_list[i],x_list[i]] == 0: print('\nERROR: Connecting point (%d,%d) is out of masked area! Select them again!\n' % (y_list[i],x_list[i])) sys.exit(1) print('Number of bridges: '+str(len(x_list)/2)) print('Bonding points coordinates:\nx: '+str(x_list)+'\ny: '+str(y_list)) # Plot Connecting Pair of Points plot_bonding_points = False if plot_bonding_points: point_yx = '' line_yx = '' n_bridge = len(x)/2 for i in range(n_bridge): pair_yx = str(y[2*i])+','+str(x[2*i])+','+str(y[2*i+1])+','+str(x[2*i+1]) if not i == n_bridge-1: point_yx += pair_yx+',' line_yx += pair_yx+';' else: point_yx += pair_yx line_yx += pair_yx try: plot_cmd = 'view.py --point-yx="'+point_yx+'" --line-yx="'+line_yx+\ '" --nodisplay -o bonding_points.png -f '+maskFile print(plot_cmd) os.system(plot_cmd) except: pass # Basic info ext = os.path.splitext(ifgram_file)[1] atr = readfile.read_attribute(ifgram_file) k = atr['FILE_TYPE'] try: ref_y = int(atr['ref_y']) ref_x = int(atr['ref_x']) except: sys.exit('ERROR: Can not find ref_y/x value, input file is not referenced in space!') # output file name if not ifgram_cor_file: ifgram_cor_file = os.path.splitext(ifgram_file)[0]+'_unwCor'+ext ifgram_cor_deramp_file = os.path.splitext(ifgram_cor_file)[0]+'_'+ramp_type+ext ##### HDF5 file if ext == '.h5': ##### Read h5 = h5py.File(ifgram_file,'r') ifgram_list = sorted(h5[k].keys()) ifgram_num = len(ifgram_list) h5out = h5py.File(ifgram_cor_file,'w') group = h5out.create_group(k) print('writing >>> '+ifgram_cor_file) if save_cor_deramp_file: h5out_deramp = h5py.File(ifgram_cor_deramp_file,'w') group_deramp = h5out_deramp.create_group(k) print('writing >>> '+ifgram_cor_deramp_file) ##### Loop print('Number of interferograms: '+str(ifgram_num)) prog_bar = ptime.progress_bar(maxValue=ifgram_num) date12_list = ptime.list_ifgram2date12(ifgram_list) for i in range(ifgram_num): ifgram = ifgram_list[i] data = h5[k][ifgram].get(ifgram)[:] data -= data[ref_y, ref_x] data_deramp, ramp = rm.remove_data_surface(data, ramp_mask, ramp_type) data_derampCor = bridging_data(data_deramp, mask, x_list, y_list) gg = group.create_group(ifgram) dset = gg.create_dataset(ifgram, data=data_derampCor-ramp, compression='gzip') for key, value in h5[k][ifgram].attrs.items(): gg.attrs[key]=value if save_cor_deramp_file: gg_deramp = group_deramp.create_group(ifgram) dset = gg_deramp.create_dataset(ifgram, data=data_derampCor, compression='gzip') for key, value in h5[k][ifgram].attrs.items(): gg_deramp.attrs[key]=value prog_bar.update(i+1, suffix=date12_list[i]) prog_bar.close() h5.close() h5out.close() try: h5out_deramp.close() except: pass #### .unw file elif ext == '.unw': print('read '+ifgram_file) data = readfile.read(ifgram_file)[0] data -= data[ref_y, ref_x] data_deramp,ramp = rm.remove_data_surface(data,ramp_mask,ramp_type) data_derampCor = bridging_data(data_deramp,mask,x_list,y_list) data_cor = data_derampCor - ramp print('writing >>> '+ifgram_cor_file) ifgram_cor_file = writefile.write(data_cor, atr, ifgram_cor_file) if save_cor_deramp_file: print('writing >>> '+ifgram_cor_deramp_file) ifgram_cor_deramp_file = writefile.write(data_derampCor, atr, ifgram_cor_deramp_file) else: sys.exit('Un-supported file type: '+ext) return ifgram_cor_file, ifgram_cor_deramp_file
def main(argv): ##### Inputs try: ifgram_file = argv[0] timeseries_file = argv[1] except: usage() sys.exit(1) try: outfile = argv[2] except: outfile = 'reconstructed_' + ifgram_file atr = readfile.read_attribute(timeseries_file) length = int(atr['FILE_LENGTH']) width = int(atr['WIDTH']) ##### Read time-series file print('loading timeseries ...') h5ts = h5py.File(timeseries_file, 'r') date_list = sorted(h5ts['timeseries'].keys()) date_num = len(date_list) timeseries = np.zeros((date_num, length * width)) print('number of acquisitions: ' + str(date_num)) prog_bar = ptime.progress_bar(maxValue=date_num) for i in range(date_num): date = date_list[i] d = h5ts['timeseries'].get(date)[:] timeseries[i, :] = d.flatten(0) prog_bar.update(i + 1, suffix=date) prog_bar.close() h5ts.close() del d range2phase = -4 * np.pi / float(atr['WAVELENGTH']) timeseries = range2phase * timeseries ##### Estimate interferograms from timeseries print( 'estimating interferograms from timeseries using design matrix from input interferograms' ) A, B = ut.design_matrix(ifgram_file) p = -1 * np.ones([A.shape[0], 1]) Ap = np.hstack((p, A)) estData = np.dot(Ap, timeseries) del timeseries ##### Write interferograms file print('writing >>> ' + outfile) h5 = h5py.File(ifgram_file, 'r') ifgram_list = sorted(h5['interferograms'].keys()) ifgram_num = len(ifgram_list) date12_list = ptime.list_ifgram2date12(ifgram_list) h5out = h5py.File(outfile, 'w') group = h5out.create_group('interferograms') print('number of interferograms: ' + str(ifgram_num)) prog_bar = ptime.progress_bar(maxValue=ifgram_num) for i in range(ifgram_num): ifgram = ifgram_list[i] data = np.reshape(estData[i, :], (length, width)) gg = group.create_group(ifgram) dset = gg.create_dataset(ifgram, data=data, compression='gzip') for key, value in h5['interferograms'][ifgram].attrs.items(): gg.attrs[key] = value prog_bar.update(i + 1, suffix=date12_list[i]) prog_bar.close() h5.close() h5out.close() print('Done.') return outfile
def multilook_file(infile, lks_y, lks_x, outfile=None): lks_y = int(lks_y) lks_x = int(lks_x) ## input file info atr = readfile.read_attribute(infile) k = atr['FILE_TYPE'] print('multilooking ' + k + ' file ' + infile) print('number of looks in y / azimuth direction: %d' % lks_y) print('number of looks in x / range direction: %d' % lks_x) ## output file name if not outfile: if os.getcwd() == os.path.dirname(os.path.abspath(infile)): ext = os.path.splitext(infile)[1] outfile = os.path.splitext(infile)[0] + '_' + str( lks_y) + 'alks_' + str(lks_x) + 'rlks' + ext else: outfile = os.path.basename(infile) print('writing >>> ' + outfile) ############################################################################### ## Read/Write multi-dataset files if k in ['interferograms', 'coherence', 'wrapped', 'timeseries']: h5 = h5py.File(infile, 'r') epochList = sorted(h5[k].keys()) epoch_num = len(epochList) prog_bar = ptime.progress_bar(maxValue=epoch_num) h5out = h5py.File(outfile, 'w') group = h5out.create_group(k) if k in ['interferograms', 'coherence', 'wrapped']: date12_list = ptime.list_ifgram2date12(epochList) print('number of interferograms: ' + str(len(epochList))) for i in range(epoch_num): epoch = epochList[i] data = h5[k][epoch].get(epoch)[:] atr = h5[k][epoch].attrs data_mli = multilook_matrix(data, lks_y, lks_x) atr_mli = multilook_attribute(atr, lks_y, lks_x, print_msg=False) gg = group.create_group(epoch) dset = gg.create_dataset(epoch, data=data_mli, compression='gzip') for key, value in atr_mli.items(): gg.attrs[key] = value prog_bar.update(i + 1, suffix=date12_list[i]) elif k == 'timeseries': print('number of acquisitions: ' + str(len(epochList))) for i in range(epoch_num): epoch = epochList[i] data = h5[k].get(epoch)[:] data_mli = multilook_matrix(data, lks_y, lks_x) dset = group.create_dataset(epoch, data=data_mli, compression='gzip') prog_bar.update(i + 1, suffix=epoch) atr = h5[k].attrs atr_mli = multilook_attribute(atr, lks_y, lks_x) for key, value in atr_mli.items(): group.attrs[key] = value h5.close() h5out.close() prog_bar.close() ## Read/Write single-dataset files elif k == '.trans': rg, az, atr = readfile.read(infile) rgmli = multilook_matrix(rg, lks_y, lks_x) #rgmli *= 1.0/lks_x azmli = multilook_matrix(az, lks_y, lks_x) #azmli *= 1.0/lks_y atr = multilook_attribute(atr, lks_y, lks_x) writefile.write(rgmli, azmli, atr, outfile) else: data, atr = readfile.read(infile) data_mli = multilook_matrix(data, lks_y, lks_x) atr = multilook_attribute(atr, lks_y, lks_x) writefile.write(data_mli, atr, outfile) return outfile
def filter_file(fname, filter_type, filter_par=None, fname_out=None): '''Filter 2D matrix with selected filter Inputs: fname : string, name/path of file to be filtered filter_type : string, filter type filter_par : string, optional, parameter for low/high pass filter for low/highpass_avg, it's kernel size in int for low/highpass_gaussain, it's sigma in float Output: fname_out : string, optional, output file name/path ''' # Basic info atr = readfile.read_attribute(fname) k = atr['FILE_TYPE'] try: ref_yx = [int(atr['ref_y']), int(atr['ref_x'])] except: ref_yx = None filter_type = filter_type.lower() MSG = 'filtering ' + k + ' file: ' + fname + ' using ' + filter_type + ' filter' if filter_type.endswith('avg'): if not filter_par: filter_par = 5 MSG += ' with kernel size of %d' % int(filter_par) elif filter_type.endswith('gaussian'): if not filter_par: filter_par = 3.0 MSG += ' with sigma of %.1f' % filter_par print(MSG) if not fname_out: ext = os.path.splitext(fname)[1] fname_out = os.path.splitext(fname)[0] + '_' + filter_type + ext ##### Multiple Dataset File if k in multi_group_hdf5_file + multi_dataset_hdf5_file: h5 = h5py.File(fname, 'r') epoch_list = sorted(h5[k].keys()) epoch_num = len(epoch_list) prog_bar = ptime.progress_bar(maxValue=epoch_num) h5out = h5py.File(fname_out, 'w') group = h5out.create_group(k) print('writing >>> ' + fname_out) if k == 'timeseries': print('number of acquisitions: ' + str(epoch_num)) for i in range(epoch_num): date = epoch_list[i] data = h5[k].get(date)[:] data_filt = filter_data(data, filter_type, filter_par) if ref_yx: data_filt -= data_filt[ref_yx[0], ref_yx[1]] dset = group.create_dataset(date, data=data_filt, compression='gzip') prog_bar.update(i + 1, suffix=date) for key, value in atr.items(): group.attrs[key] = value elif k in ['interferograms', 'wrapped', 'coherence']: print('number of interferograms: ' + str(epoch_num)) date12_list = ptime.list_ifgram2date12(epoch_list) for i in range(epoch_num): ifgram = epoch_list[i] data = h5[k][ifgram].get(ifgram)[:] data_filt = filter_data(data, filter_type, filter_par) if ref_yx and k in ['interferograms']: data_filt -= data_filt[ref_yx[0], ref_yx[1]] gg = group.create_group(ifgram) dset = gg.create_dataset(ifgram, data=data_filt, compression='gzip') for key, value in h5[k][ifgram].attrs.items(): gg.attrs[key] = value prog_bar.update(i + 1, suffix=date12_list[i]) h5.close() h5out.close() prog_bar.close() ##### Single Dataset File else: data, atr = readfile.read(fname) data_filt = filter_data(data, filter_type, filter_par) if ref_yx and k in ['.unw', 'velocity']: data_filt -= data_filt[ref_yx[0], ref_yx[1]] print('writing >>> ' + fname_out) writefile.write(data_filt, atr, fname_out) return fname_out
def main(argv): inps = cmdLineParse() suffix = '_demErr' if not inps.outfile: inps.outfile = os.path.splitext( inps.timeseries_file)[0] + suffix + os.path.splitext( inps.timeseries_file)[1] # 1. template_file if inps.template_file: print('read option from template file: ' + inps.template_file) inps = read_template2inps(inps.template_file, inps) # Read Time Series print("loading time series: " + inps.timeseries_file) atr = readfile.read_attribute(inps.timeseries_file) length = int(atr['FILE_LENGTH']) width = int(atr['WIDTH']) h5 = h5py.File(inps.timeseries_file) date_list = sorted(h5['timeseries'].keys()) date_num = len(date_list) print('number of acquisitions: ' + str(date_num)) # Exclude date info #inps.ex_date = ['20070115','20100310'] if inps.ex_date: inps = get_exclude_date(inps, date_list) if inps.ex_date: inps.ex_flag = np.array([i not in inps.ex_date for i in date_list]) timeseries = np.zeros((len(date_list), length * width), np.float32) prog_bar = ptime.progress_bar(maxValue=date_num, prefix='loading: ') for i in range(date_num): date = date_list[i] d = h5['timeseries'].get(date)[:] timeseries[i][:] = d.flatten('F') prog_bar.update(i + 1, suffix=date) del d h5.close() prog_bar.close() # Perpendicular Baseline print('read perpendicular baseline') try: inps.pbase = ut.perp_baseline_timeseries(atr, dimension=0) if inps.pbase.shape[1] > 1: print('\tconsider P_BASELINE variation in azimuth direction') else: pbase = inps.pbase except: print('\tCannot find P_BASELINE_TIMESERIES from timeseries file.') print('\tTrying to calculate it from interferograms file') if inps.ifgram_file: inps.pbase = np.array( ut.perp_baseline_ifgram2timeseries( inps.ifgram_file)[0]).reshape(date_num, 1) else: message = 'No interferogram file input!\n'+\ 'Can not correct for DEM residula without perpendicular base info!' raise Exception(message) # Temporal Baseline print('read temporal baseline') inps.tbase = np.array(ptime.date_list2tbase(date_list)[0]).reshape( date_num, 1) # Incidence angle (look angle in the paper) if inps.incidence_angle: if os.path.isfile(inps.incidence_angle): print('reading incidence angle from file: ' + inps.incidence_angle) inps.incidence_angle = readfile.read(inps.incidence_angle)[0] else: try: inps.incidence_angle = np.array(float(inps.incidence_angle)) print('use input incidence angle : ' + str(inps.incidence_angle)) except: raise ValueError('Can not read input incidence angle: ' + str(inps.incidence_angle)) else: print('calculate incidence angle using attributes of time series file') if inps.pbase.shape[1] > 1: inps.incidence_angle = ut.incidence_angle(atr, dimension=2) else: inps.incidence_angle = ut.incidence_angle(atr, dimension=1) inps.incidence_angle *= np.pi / 180.0 # Range distance if inps.range_dis: if os.path.isfile(inps.range_dis): print('reading range distance from file: ' + inps.range_dis) inps.range_dis = readfile.read(inps.range_dis)[0] else: try: inps.range_dis = np.array(float(inps.range_dis)) print('use input range distance : ' + str(inps.range_dis)) except: raise ValueError('Can not read input incidence angle: ' + str(inps.range_dis)) else: print( 'calculate range distance using attributes from time series file') if inps.pbase.shape[1] > 1: inps.range_dis = ut.range_distance(atr, dimension=2) else: inps.range_dis = ut.range_distance(atr, dimension=1) # Design matrix - temporal deformation model using tbase print('-------------------------------------------------') if inps.phase_velocity: print('using phase velocity history') A1 = np.ones((date_num - 1, 1)) A2 = (inps.tbase[1:date_num] + inps.tbase[0:date_num - 1]) / 2.0 A3 = (inps.tbase[1:date_num]**3 - inps.tbase[0:date_num - 1]** 3) / np.diff(inps.tbase, axis=0) / 6.0 #A3 = (inps.tbase[1:date_num]**2 + inps.tbase[1:date_num]*inps.tbase[0:date_num-1] +\ # inps.tbase[0:date_num-1]**2) / 6.0 else: print('using phase history') A1 = np.hstack((np.ones((date_num, 1)), inps.tbase)) A2 = inps.tbase**2 / 2.0 A3 = inps.tbase**3 / 6.0 # Polynomial order of model print("temporal deformation model's polynomial order = " + str(inps.poly_order)) if inps.poly_order == 1: A_def = A1 elif inps.poly_order == 2: A_def = np.hstack((A1, A2)) elif inps.poly_order == 3: A_def = np.hstack((A1, A2, A3)) # step function if inps.step_date: print("temporal deformation model's step function step at " + inps.step_date) step_yy = ptime.yyyymmdd2years(inps.step_date) yy_list = ptime.yyyymmdd2years(date_list) flag_array = np.array(yy_list) >= step_yy A_step = np.zeros((date_num, 1)) A_step[flag_array] = 1.0 A_def = np.hstack((A_def, A_step)) # Heresh's original code for phase history approach #A_def = np.hstack((A2,A1,np.ones((date_num,1)))) print('-------------------------------------------------') ##---------------------------------------- Loop for L2-norm inversion -----------------------------------## delta_z_mat = np.zeros([length, width], dtype=np.float32) resid_n = np.zeros([A_def.shape[0], length * width], dtype=np.float32) constC = np.zeros([length, width], dtype=np.float32) #delta_a_mat = np.zeros([length, width]) if inps.incidence_angle.ndim == 2 and inps.range_dis.ndim == 2: print('inversing using L2-norm minimization (unweighted least squares)'\ ' pixel by pixel: %d loops in total' % (length*width)) prog_bar = ptime.progress_bar(maxValue=length * width, prefix='calculating: ') for i in range(length * width): row = i % length col = i / length range_dis = inps.range_dis[row, col] inc_angle = inps.incidence_angle[row, col] # Consider P_BASELINE variation within one interferogram if inps.pbase.shape[1] > 1: pbase = inps.pbase[:, row].reshape(date_num, 1) # Design matrix - DEM error using pbase, range distance and incidence angle A_delta_z = pbase / (range_dis * np.sin(inc_angle)) if inps.phase_velocity: pbase_v = np.diff(pbase, axis=0) / np.diff(inps.tbase, axis=0) A_delta_z_v = pbase_v / (range_dis * np.sin(inc_angle)) A = np.hstack((A_delta_z_v, A_def)) else: A = np.hstack((A_delta_z, A_def)) # L-2 norm inversion if inps.ex_date: A_inv = np.linalg.pinv(A[inps.ex_flag, :]) else: A_inv = np.linalg.pinv(A) # Get unknown parameters X = [delta_z, vel, acc, delta_acc, ...] ts_dis = timeseries[:, i] if inps.phase_velocity: ts_dis = np.diff(ts_dis, axis=0) / np.diff(inps.tbase, axis=0) if inps.ex_date: X = np.dot(A_inv, ts_dis[inps.ex_flag]) else: X = np.dot(A_inv, ts_dis) # Residual vector n resid_n[:, i] = ts_dis - np.dot(A, X) # Update DEM error / timeseries matrix delta_z = X[0] delta_z_mat[row, col] = delta_z if inps.update_timeseries: timeseries[:, i] -= np.dot(A_delta_z, delta_z).flatten() prog_bar.update(i + 1, every=length * width / 100) prog_bar.close() elif inps.incidence_angle.ndim == 1 and inps.range_dis.ndim == 1: print('inversing using L2-norm minimization (unweighted least squares)'\ ' column by column: %d loops in total' % (width)) prog_bar = ptime.progress_bar(maxValue=width, prefix='calculating: ') for i in range(width): range_dis = inps.range_dis[i] inc_angle = inps.incidence_angle[i] # Design matrix - DEM error using pbase, range distance and incidence angle A_delta_z = pbase / (range_dis * np.sin(inc_angle)) if inps.phase_velocity: pbase_v = np.diff(pbase, axis=0) / np.diff(inps.tbase, axis=0) A_delta_z_v = pbase_v / (range_dis * np.sin(inc_angle)) A = np.hstack((A_delta_z_v, A_def)) else: A = np.hstack((A_delta_z, A_def)) # L-2 norm inversion if inps.ex_date: A_inv = np.linalg.pinv(A[inps.ex_flag, :]) else: A_inv = np.linalg.pinv(A) # Get unknown parameters X = [delta_z, vel, acc, delta_acc, ...] ts_dis = timeseries[:, i * length:(i + 1) * length] if inps.phase_velocity: ts_dis = np.diff(ts_dis, axis=0) / np.diff(inps.tbase, axis=0) if inps.ex_date: X = np.dot(A_inv, ts_dis[inps.ex_flag, :]) else: X = np.dot(A_inv, ts_dis) # Residual vector n resid_n[:, i * length:(i + 1) * length] = ts_dis - np.dot(A, X) constC[:, i] = X[1].reshape((1, length)) # Update DEM error / timeseries matrix delta_z = X[0].reshape((1, length)) delta_z_mat[:, i] = delta_z if inps.update_timeseries: timeseries[:, i * length:(i + 1) * length] -= np.dot( A_delta_z, delta_z) prog_bar.update(i + 1, every=width / 100) prog_bar.close() elif inps.incidence_angle.ndim == 0 and inps.range_dis.ndim == 0: print( 'inversing using L2-norm minimization (unweighted least squares) for the whole area' ) # Design matrix - DEM error using pbase, range distance and incidence angle A_delta_z = pbase / (inps.range_dis * np.sin(inps.incidence_angle)) if inps.phase_velocity: pbase_v = np.diff(pbase, axis=0) / np.diff(inps.tbase, axis=0) A_delta_z_v = pbase_v / (inps.range_dis * np.sin(inps.incidence_angle)) A = np.hstack((A_delta_z_v, A_def)) else: A = np.hstack((A_delta_z, A_def)) # L-2 norm inversion if inps.ex_date: A_inv = np.linalg.pinv(A[inps.ex_flag, :]) else: A_inv = np.linalg.pinv(A) # Get unknown parameters X = [delta_z, vel, acc, delta_acc, ...] if inps.phase_velocity: timeseries = np.diff(timeseries, axis=0) / np.diff(inps.tbase, axis=0) if inps.ex_date: X = np.dot(A_inv, timeseries[inps.ex_flag, :]) else: X = np.dot(A_inv, timeseries) # Residual vector n resid_n = ts_dis - np.dot(A, X) # Update DEM error / timeseries matrix delta_z_mat = X[0].reshape((1, length * width)) if inps.update_timeseries: timeseries -= np.dot(A_delta_z, delta_z_mat) delta_z_mat = np.reshape(delta_z_mat, [length, width], order='F') else: print( 'ERROR: Script only support same dimension for both incidence angle and range distance matrix.' ) print('dimension of incidence angle: ' + str(inps.incidence_angle.ndim)) print('dimension of range distance: ' + str(inps.range_dis.ndim)) sys.exit(1) ##------------------------------------------------ Output --------------------------------------------## # DEM error file if 'Y_FIRST' in list(atr.keys()): dem_error_file = 'demGeo_error.h5' else: dem_error_file = 'demRadar_error.h5' #if inps.phase_velocity: suffix = '_pha_poly'+str(inps.poly_order) #else: suffix = '_vel_poly'+str(inps.poly_order) #dem_error_file = os.path.splitext(dem_error_file)[0]+suffix+os.path.splitext(dem_error_file)[1] print('writing >>> ' + dem_error_file) atr_dem_error = atr.copy() atr_dem_error['FILE_TYPE'] = 'dem' atr_dem_error['UNIT'] = 'm' writefile.write(delta_z_mat, atr_dem_error, dem_error_file) ## Phase Constant C = resid_n[0,:] #atrC = atr.copy() #atrC['FILE_TYPE'] = 'mask' #atrC['UNIT'] = 'm' #writefile.write(constC, atrC, 'constD.h5') ## Corrected DEM file #if inps.dem_file: # inps.dem_outfile = os.path.splitext(inps.dem_file)[0]+suffix+os.path.splitext(inps.dem_file)[1] # print '--------------------------------------' # print 'writing >>> '+inps.dem_outfile # dem, atr_dem = readfile.read(inps.dem_file) # writefile.write(dem+delta_z_mat, atr_dem, inps.dem_outfile) #outfile = 'delta_acc.h5' #print 'writing >>> '+outfile #atr_dem_error = atr.copy() #atr_dem_error['FILE_TYPE'] = 'velocity' #atr_dem_error['UNIT'] = 'm/s' #writefile.write(delta_a_mat, atr_dem_error, outfile) #print '**************************************' # Corrected Time Series if inps.update_timeseries: print('writing >>> ' + inps.outfile) print('number of dates: ' + str(len(date_list))) h5out = h5py.File(inps.outfile, 'w') group = h5out.create_group('timeseries') prog_bar = ptime.progress_bar(maxValue=date_num, prefix='writing: ') for i in range(date_num): date = date_list[i] d = np.reshape(timeseries[i][:], [length, width], order='F') dset = group.create_dataset(date, data=d, compression='gzip') prog_bar.update(i + 1, suffix=date) prog_bar.close() for key, value in atr.items(): group.attrs[key] = value h5out.close() outFile = os.path.splitext(inps.outfile)[0] + 'InvResid.h5' print('writing >>> ' + outFile) print('number of dates: ' + str(A_def.shape[0])) h5out = h5py.File(outFile, 'w') group = h5out.create_group('timeseries') prog_bar = ptime.progress_bar(maxValue=A_def.shape[0], prefix='writing: ') for i in range(A_def.shape[0]): date = date_list[i] d = np.reshape(resid_n[i][:], [length, width], order='F') dset = group.create_dataset(date, data=d, compression='gzip') prog_bar.update(i + 1, suffix=date) prog_bar.close() # Attribute for key, value in atr.items(): group.attrs[key] = value if A_def.shape[0] == date_num: group.attrs['UNIT'] = 'm' else: group.attrs['UNIT'] = 'm/yr' h5out.close() return
def main(argv): try: timeseriesFile = argv[0] except: usage() sys.exit(1) try: outname = argv[1] except: outname = 'sum_' + timeseriesFile ##### Read Timeseries atr = readfile.read_attribute(timeseriesFile) k = atr['FILE_TYPE'] print("loading time series: " + timeseriesFile) h5timeseries = h5py.File(timeseriesFile) dateList = sorted(h5timeseries['timeseries'].keys()) date_num = len(dateList) print('number of acquisitions: %d' % date_num) length = int(atr['FILE_LENGTH']) width = int(atr['WIDTH']) D = np.zeros((date_num, length * width), np.float32) prog_bar = ptime.progress_bar(maxValue=date_num) for i in range(date_num): date = dateList[i] d = h5timeseries['timeseries'].get(date)[:] D[i][:] = d.flatten(0) prog_bar.update(i + 1, suffix=date) prog_bar.close() h5timeseries.close() ##### Calculate Sum print('calculating epochs sum ...') sumD = np.zeros(D.shape) prog_bar.reset() for i in range(date_num): sumD[j, :] = np.sum(np.abs(D - D[j, :]), 0) / date_num prog_bar.update(i + 1) prog_bar.close() ## Normalize to 0 and 1 ## with high atmosphere equal to 0 and no atmosphere equal to 1 sumD -= np.max(sumD, 0) sumD *= -1 sumD /= np.max(sumD, 0) sumD[np.isnan(sumD)] = 1 ##### Write sum epochs file print('writing to >>> ' + outname) h5sum = h5py.File(outname, 'w') group = h5sum.create_group('timeseries') prog_bar.reset() for i in range(date_num): date = dateList[i] d = np.reshape(sumD[i][:], [length, width]) dset = group.create_dataset(date, data=d, compression='gzip') prog_bar.update(i + 1, suffix=date) prog_bar.close() for key, value in atr.items(): group.attrs[key] = value h5sum.close() print('Done.')
def file_operation(fname, operator, operand, fname_out=None): '''Mathmathic operation of file''' # Basic Info atr = readfile.read_attribute(fname) k = atr['FILE_TYPE'] print('input is '+k+' file: '+fname) print('operation: file %s %f' % (operator, operand)) # default output filename if not fname_out: if operator in ['+','plus', 'add', 'addition']: suffix = 'plus' elif operator in ['-','minus', 'substract','substraction']: suffix = 'minus' elif operator in ['*','times', 'multiply', 'multiplication']: suffix = 'multiply' elif operator in ['/','obelus','divide', 'division']: suffix = 'divide' elif operator in ['^','pow','power']: suffix = 'pow' ext = os.path.splitext(fname)[1] fname_out = os.path.splitext(fname)[0]+'_'+suffix+str(operand)+ext ##### Multiple Dataset HDF5 File if k in multi_group_hdf5_file+multi_dataset_hdf5_file: h5 = h5py.File(fname,'r') epoch_list = sorted(h5[k].keys()) epoch_num = len(epoch_list) prog_bar = ptime.progress_bar(maxValue=epoch_num) h5out = h5py.File(fname_out,'w') group = h5out.create_group(k) print('writing >>> '+fname_out) if k == 'timeseries': print('number of acquisitions: '+str(epoch_num)) for i in range(epoch_num): date = epoch_list[i] data = h5[k].get(date)[:] data_out = data_operation(data, operator, operand) dset = group.create_dataset(date, data=data_out, compression='gzip') prog_bar.update(i+1, suffix=date) for key,value in atr.items(): group.attrs[key] = value elif k in ['interferograms','wrapped','coherence']: print('number of interferograms: '+str(epoch_num)) date12_list = ptime.list_ifgram2date12(epoch_list) for i in range(epoch_num): ifgram = epoch_list[i] data = h5[k][ifgram].get(ifgram)[:] data_out = data_operation(data, operator, operand) gg = group.create_group(ifgram) dset = gg.create_dataset(ifgram, data=data_out, compression='gzip') for key, value in h5[k][ifgram].attrs.items(): gg.attrs[key] = value prog_bar.update(i+1, suffix=date12_list[i]) h5.close() h5out.close() prog_bar.close() ##### Duo datasets non-HDF5 File elif k in ['.trans']: rg, az, atr = readfile.read(fname) rg_out = data_operation(rg, operator, operand) az_out = data_operation(az, operator, operand) print('writing >>> '+fname_out) writefile.write(rg_out, az_out, atr, fname_out) ##### Single Dataset File else: data, atr = readfile.read(fname) data_out = data_operation(data, operator, operand) print('writing >>> '+fname_out) writefile.write(data_out, atr, fname_out) return fname_out
def main(argv): inps = cmdLineParse() #print '\n********** Inversion: Time Series to Velocity ***********' atr = readfile.read_attribute(inps.timeseries_file) k = atr['FILE_TYPE'] print('input ' + k + ' file: ' + inps.timeseries_file) if not k == 'timeseries': sys.exit('ERROR: input file is not timeseries!') h5file = h5py.File(inps.timeseries_file) ##################################### ## Date Info dateListAll = sorted(h5file[k].keys()) print('--------------------------------------------') print('Dates from input file: ' + str(len(dateListAll))) print(dateListAll) inps.ex_date = get_exclude_date(inps, dateListAll) dateList = sorted(list(set(dateListAll) - set(inps.ex_date))) print('--------------------------------------------') if len(dateList) == len(dateListAll): print('using all dates to calculate the velocity') else: print('Dates used to estimate the velocity: ' + str(len(dateList))) print(dateList) print('--------------------------------------------') # Date Aux Info dates, datevector = ptime.date_list2vector(dateList) ##################################### ## Inversion # Design matrix B = np.ones([len(datevector), 2]) B[:, 0] = datevector #B_inv = np.linalg.pinv(B) B_inv = np.dot(np.linalg.inv(np.dot(B.T, B)), B.T) B_inv = np.array(B_inv, np.float32) # Loading timeseries print("Loading time series file: " + inps.timeseries_file + ' ...') width = int(atr['WIDTH']) length = int(atr['FILE_LENGTH']) dateNum = len(dateList) timeseries = np.zeros([dateNum, length * width], np.float32) prog_bar = ptime.progress_bar(maxValue=dateNum, prefix='loading: ') for i in range(dateNum): date = dateList[i] timeseries[i, :] = h5file[k].get(date)[:].flatten() prog_bar.update(i + 1, suffix=date) prog_bar.close() h5file.close() # Velocity Inversion print('Calculating velocity ...') X = np.dot(B_inv, timeseries) velocity = np.reshape(X[0, :], [length, width]) print('Calculating rmse ...') timeseries_linear = np.dot(B, X) timeseries_residual = timeseries - timeseries_linear rmse = np.reshape(np.sqrt((np.sum((timeseries_residual)**2, 0)) / dateNum), [length, width]) print('Calculating the standard deviation of the estimated velocity ...') s1 = np.sqrt(np.sum(timeseries_residual**2, 0) / (dateNum - 2)) s2 = np.sqrt(np.sum((datevector - np.mean(datevector))**2)) std = np.reshape(s1 / s2, [length, width]) # SSt=np.sum((timeseries-np.mean(timeseries,0))**2,0) # SSres=np.sum(residual**2,0) # SS_REG=SSt-SSres # Rsquared=np.reshape(SS_REG/SSt,[length,width]) ###################################################### # covariance of the velocities ##################################### # Output file name if not inps.outfile: inps.outfile = 'velocity.h5' inps.outfile_rmse = os.path.splitext( inps.outfile)[0] + 'Rmse' + os.path.splitext(inps.outfile)[1] inps.outfile_std = os.path.splitext( inps.outfile)[0] + 'Std' + os.path.splitext(inps.outfile)[1] inps.outfile_r2 = os.path.splitext( inps.outfile)[0] + 'R2' + os.path.splitext(inps.outfile)[1] # Attributes atr['date1'] = datevector[0] atr['date2'] = datevector[dateNum - 1] # File Writing print('--------------------------------------') atr['FILE_TYPE'] = 'velocity' print('writing >>> ' + inps.outfile) writefile.write(velocity, atr, inps.outfile) #atr['FILE_TYPE'] = 'rmse' print('writing >>> ' + inps.outfile_rmse) writefile.write(rmse, atr, inps.outfile_rmse) #atr['FILE_TYPE'] = 'rmse' print('writing >>> ' + inps.outfile_std) writefile.write(std, atr, inps.outfile_std) print('Done.\n') return inps.outfile
def seed_file_reference_value(File, outName, refList, ref_y='', ref_x=''): ## Seed Input File with reference value in refList print('Reference value: ') print(refList) ##### IO Info atr = readfile.read_attribute(File) k = atr['FILE_TYPE'] print('file type: ' + k) ##### Multiple Dataset File if k in ['timeseries', 'interferograms', 'wrapped', 'coherence']: ##### Input File Info h5file = h5py.File(File, 'r') epochList = sorted(h5file[k].keys()) epochNum = len(epochList) ##### Check Epoch Number if not epochNum == len(refList): print('\nERROR: Reference value has different epoch number'+\ 'from input file.') print('Reference List epoch number: ' + str(refList)) print('Input file epoch number: ' + str(epochNum)) sys.exit(1) ##### Output File Info h5out = h5py.File(outName, 'w') group = h5out.create_group(k) print('writing >>> ' + outName) prog_bar = ptime.progress_bar(maxValue=epochNum, prefix='seeding: ') ## Loop if k == 'timeseries': print('number of acquisitions: ' + str(epochNum)) for i in range(epochNum): epoch = epochList[i] data = h5file[k].get(epoch)[:] data -= refList[i] dset = group.create_dataset(epoch, data=data, compression='gzip') prog_bar.update(i + 1, suffix=epoch) atr = seed_attributes(atr, ref_x, ref_y) for key, value in atr.items(): group.attrs[key] = value elif k in ['interferograms', 'wrapped', 'coherence']: print('number of interferograms: ' + str(epochNum)) date12_list = ptime.list_ifgram2date12(epochList) for i in range(epochNum): epoch = epochList[i] #print epoch data = h5file[k][epoch].get(epoch)[:] atr = h5file[k][epoch].attrs data -= refList[i] atr = seed_attributes(atr, ref_x, ref_y) gg = group.create_group(epoch) dset = gg.create_dataset(epoch, data=data, compression='gzip') for key, value in atr.items(): gg.attrs[key] = value prog_bar.update(i + 1, suffix=date12_list[i]) ##### Single Dataset File else: print('writing >>> ' + outName) data, atr = readfile.read(File) data -= refList atr = seed_attributes(atr, ref_x, ref_y) writefile.write(data, atr, outName) ##### End & Cleaning try: prog_bar.close() h5file.close() h5out.close() except: pass return outName
def add_files(fname_list, fname_out=None): '''Generate sum of all input files Inputs: fname_list - list of string, path/name of input files to be added fname_out - string, optional, path/name of output file Output: fname_out - string, path/name of output file Example: 'mask_all.h5' = add_file(['mask_1.h5','mask_2.h5','mask_3.h5'], 'mask_all.h5') ''' # Default output file name ext = os.path.splitext(fname_list[0])[1] if not fname_out: fname_out = os.path.splitext(fname_list[0])[0] for i in range(1, len(fname_list)): fname_out += '_plus_' + os.path.splitext( os.path.basename(fname_list[i]))[0] fname_out += ext # Basic Info atr = readfile.read_attribute(fname_list[0]) k = atr['FILE_TYPE'] length = int(atr['FILE_LENGTH']) width = int(atr['WIDTH']) print('First input file is ' + atr['PROCESSOR'] + ' ' + k) ## Multi-dataset/group file if k in multi_group_hdf5_file + multi_dataset_hdf5_file: # File Type Check for i in range(1, len(fname_list)): ki = readfile.read_attribute(fname_list[i])['FILE_TYPE'] if (k in multi_dataset_hdf5_file and ki in multi_dataset_hdf5_file or k in multi_group_hdf5_file and ki in multi_group_hdf5_file): pass else: print('Input files structure are not the same: ' + k + ' v.s. ' + ki) sys.exit(1) print('writing >>> ' + fname_out) h5out = h5py.File(fname_out, 'w') group = h5out.create_group(k) h5 = h5py.File(fname_list[0], 'r') epoch_list = sorted(h5[k].keys()) epoch_num = len(epoch_list) prog_bar = ptime.progress_bar(maxValue=epoch_num) if k in multi_dataset_hdf5_file: print('number of acquisitions: %d' % epoch_num) for i in range(epoch_num): epoch = epoch_list[i] data = np.zeros((length, width)) for fname in fname_list: h5file = h5py.File(fname, 'r') d = h5file[k].get(epoch)[:] data = add_matrix(data, d) dset = group.create_dataset(epoch, data=data, compression='gzip') prog_bar.update(i + 1, suffix=epoch) for key, value in atr.items(): group.attrs[key] = value h5out.close() h5.close() prog_bar.close() elif k in multi_group_hdf5_file: print('number of interferograms: %d' % epoch_num) date12_list = ptime.list_ifgram2date12(epoch_list) for i in range(epoch_num): epoch = epoch_list[i] data = np.zeros((length, width)) for fname in fname_list: h5file = h5py.File(fname, 'r') temp_k = list(h5file.keys())[0] temp_epoch_list = sorted(h5file[temp_k].keys()) d = h5file[temp_k][temp_epoch_list[i]].get( temp_epoch_list[i])[:] data = add_matrix(data, d) gg = group.create_group(epoch) dset = gg.create_dataset(epoch, data=data, compression='gzip') for key, value in h5[k][epoch].attrs.items(): gg.attrs[key] = value prog_bar.update(i + 1, suffix=date12_list[i]) h5out.close() h5.close() prog_bar.close() ## Single dataset files else: data = np.zeros((length, width)) for fname in fname_list: print('loading ' + fname) d, r = readfile.read(fname) data = add_matrix(data, d) print('writing >>> ' + fname_out) writefile.write(data, atr, fname_out) return fname_out
def unwrap_error_correction_phase_closure(ifgram_file, mask_file, ifgram_cor_file=None): '''Correct unwrapping errors in network of interferograms using phase closure. Inputs: ifgram_file - string, name/path of interferograms file mask_file - string, name/path of mask file to mask the pixels to be corrected ifgram_cor_file - string, optional, name/path of corrected interferograms file Output: ifgram_cor_file Example: 'unwrapIfgram_unwCor.h5' = unwrap_error_correction_phase_closure('Seeded_unwrapIfgram.h5','mask.h5') ''' print('read mask from file: '+mask_file) mask = readfile.read(mask_file)[0].flatten(1) atr = readfile.read_attribute(ifgram_file) length = int(atr['FILE_LENGTH']) width = int(atr['WIDTH']) k = atr['FILE_TYPE'] pixel_num = length*width # Check reference pixel try: ref_y = int(atr['ref_y']) ref_x = int(atr['ref_x']) except: sys.exit('ERROR: Can not find ref_y/x value, input file is not referenced in space!') h5 = h5py.File(ifgram_file,'r') ifgram_list = sorted(h5[k].keys()) ifgram_num = len(ifgram_list) ##### Prepare curls curls, Triangles, C = ut.get_triangles(h5) curl_num = np.shape(curls)[0] print('Number of triangles: '+ str(curl_num)) curl_file='curls.h5' if not os.path.isfile(curl_file): print('writing >>> '+curl_file) ut.generate_curls(curl_file, h5, Triangles, curls) thr=0.50 curls = np.array(curls); n1=curls[:,0]; n2=curls[:,1]; n3=curls[:,2] print('reading interferograms...') print('Number of interferograms: '+ str(ifgram_num)) data = np.zeros((ifgram_num,pixel_num),np.float32) prog_bar = ptime.progress_bar(maxValue=ifgram_num) for ni in range(ifgram_num): ifgram = ifgram_list[ni] d = h5[k][ifgram].get(ifgram)[:].flatten(1) data[ni,:] = d prog_bar.update(ni+1) prog_bar.close() print('reading curls ...') print('number of culrs: '+str(curl_num)) h5curl = h5py.File(curl_file,'r') curl_list = sorted(h5curl[k].keys()) curl_data = np.zeros((curl_num, pixel_num),np.float32) prog_bar = ptime.progress_bar(maxValue=curl_num) for ni in range(curl_num): d = h5curl[k][curl_list[ni]].get(curl_list[ni])[:].flatten(1) curl_data[ni,:] = d.flatten(1) prog_bar.update(ni+1) prog_bar.close() h5curl.close() print('estimating unwrapping error pixel by pixel ...') EstUnwrap = np.zeros((ifgram_num,pixel_num),np.float32) prog_bar = ptime.progress_bar(maxValue=pixel_num) for ni in range(pixel_num): if mask[ni]==1: dU = data[:,ni] unwCurl = np.array(curl_data[:,ni]) ind = np.abs(unwCurl)>=thr; N1 =n1[ind]; N2 =n2[ind]; N3 =n3[ind] indC = np.abs(unwCurl)< thr; Nc1=n1[indC]; Nc2=n2[indC]; Nc3=n3[indC] N =np.hstack([N1, N2, N3]); UniN =np.unique(N) Nc=np.hstack([Nc1,Nc2,Nc3]); UniNc=np.unique(Nc) inter = list(set(UniNc) & set(UniN)) # intersetion UniNc = list(UniNc) for x in inter: UniNc.remove(x) D = np.zeros([len(UniNc),ifgram_num]) for i in range(len(UniNc)): D[i,UniNc[i]]=1 AAA = np.vstack([-2*np.pi*C,D]) AAAA = np.vstack([AAA,0.25*np.eye(ifgram_num)]) ########## # with Tikhonov regularization: LLL = list(np.dot(C,dU)) + list(np.zeros(np.shape(UniNc)[0])) + list(np.zeros(ifgram_num)) ind = np.isnan(AAAA) M1 = pinv(AAAA) M = np.dot(M1,LLL) EstUnwrap[:,ni] = np.round(M[0:ifgram_num])*2.0*np.pi prog_bar.update(ni+1, suffix='%s/%d' % (ni,pixel_num)) prog_bar.close() dataCor = data + EstUnwrap ##### Output if not ifgram_cor_file: ifgram_cor_file = os.path.splitext(ifgram_file)[0]+'_unwCor.h5' print('writing >>> '+ifgram_cor_file) h5unwCor = h5py.File(ifgram_cor_file,'w') gg = h5unwCor.create_group(k) prog_bar = ptime.progress_bar(maxValue=ifgram_num) for i in range(ifgram_num): ifgram = ifgram_list[i] group = gg.create_group(ifgram) dset = group.create_dataset(ifgram, data=np.reshape(dataCor[i,:],[width,length]).T, compression='gzip') for key, value in h5[k][ifgram].attrs.items(): group.attrs[key] = value prog_bar.update(i+1) prog_bar.close() h5unwCor.close() h5.close() return ifgram_cor_file
def main(argv): inps = cmdLineParse() # Basic info atr = readfile.read_attribute(inps.timeseries_file) k = atr['FILE_TYPE'] if k not in ['timeseries']: sys.exit('ERROR: only timeseries file supported, input is ' + k + ' file!') h5 = h5py.File(inps.timeseries_file, 'r') date_list = sorted(h5[k].keys()) date_num = len(date_list) length = int(atr['FILE_LENGTH']) width = int(atr['WIDTH']) pixel_num = length * width tbase = np.array(ptime.date_list2tbase(date_list)[0], np.float32).reshape( (date_num, 1)) tbase /= 365.25 # Read timeseries print('loading time-series ...') timeseries = np.zeros((date_num, pixel_num)) prog_bar = ptime.progress_bar(maxValue=date_num) for i in range(date_num): date = date_list[i] d = h5[k].get(date)[:] timeseries[i, :] = d.flatten(0) prog_bar.update(i + 1, suffix=date) del d h5.close() prog_bar.close() # Smooth timeseries with moving window in time print( 'smoothing time-series using moving gaussian window with size of %.1f years' % inps.time_win) timeseries_filt = np.zeros((date_num, pixel_num)) prog_bar = ptime.progress_bar(maxValue=date_num) for i in range(date_num): date = date_list[i] # Weight from Gaussian (normal) distribution in time t_diff = tbase[i] - tbase weight = np.exp(-0.5 * (t_diff**2) / (inps.time_win**2)) weight /= np.sum(weight) weightMat = np.tile(weight, (1, pixel_num)) # Smooth the current acquisition - moving window in time one by one timeseries_filt[i, :] = np.sum(timeseries * weightMat, 0) prog_bar.update(i + 1, suffix=date) del weightMat del timeseries prog_bar.close() # Write smoothed timeseries file try: ref_date = atr['ref_date'] except: ref_date = date_list[0] ref_date_idx = date_list.index(ref_date) print('reference date: ' + ref_date) print('reference date index: ' + str(ref_date_idx)) ref_data = np.reshape(timeseries_filt[ref_date_idx, :], [length, width]) if not inps.outfile: inps.outfile = os.path.splitext(inps.timeseries_file)[0] + '_smooth.h5' print('writing >>> ' + inps.outfile) print('number of acquisitions: ' + str(date_num)) h5out = h5py.File(inps.outfile, 'w') group = h5out.create_group(k) prog_bar = ptime.progress_bar(maxValue=date_num) for i in range(date_num): date = date_list[i] data = np.reshape(timeseries_filt[i, :], [length, width]) dset = group.create_dataset(date, data=data - ref_data, compression='gzip') prog_bar.update(i + 1, suffix=date) for key, value in atr.items(): group.attrs[key] = value h5out.close() prog_bar.close() print('Done.') return inps.outfile