def train_fake(self, input, targets, epsilon = 1e-10): init_states = [input, dy.zeros(self.dim_lstm)] state = self.lstm.initial_state(init_states) loss = dy.zeros(1) W = dy.parameter(self.h2o) b = dy.parameter(self.b) state = state.add_input(self.lu[targets[0]]) for target in targets[1:]: loss += dy.pickneglogsoftmax(W * state.output() + b + epsilon, target) embedding = self.lu[target] state = state.add_input(embedding) return loss
def eval_loss(self, x, y, dropout=False): sentence_a, sentence_b = x sent_a_ords = [ self.embeddings.get_ord(word) for word in sentence_a.split() ] a_vecs = dy.lookup_batch(self.params["E"], sent_a_ords, update=False) * 0.05 b_vecs = dy.lookup_batch( self.params["E"], [self.embeddings.get_ord(word) for word in sentence_b.split()], update=False) * 0.05 output = self._eval_network(a_vecs, b_vecs, y, dropout=False) self.last_case_class = np.argmax(output.npvalue()) loss = dy.pickneglogsoftmax(output, y) return loss
def train_batch(self, words): losses = [] W = dy.parameter(self.W) b = dy.parameter(self.b) for word in words: wlosses = [] word = self.word_to_indices(word) s = self.lstm.initial_state() for c, next_c in zip(word, word[1:]): s = s.add_input(self.lookup[c]) unnormalized = dy.affine_transform([b, W, s.output()]) wlosses.append(dy.pickneglogsoftmax(unnormalized, next_c)) losses.append(dy.esum(wlosses) / len(word)) return dy.esum(losses) / len(words)
def main(): parser = argparse.ArgumentParser(description='Selective Encoding for Abstractive Sentence Summarization in DyNet') parser.add_argument('--gpu', type=str, default='0', help='GPU ID to use. For cpu, set -1 [default: -1]') parser.add_argument('--n_epochs', type=int, default=3, help='Number of epochs [default: 3]') parser.add_argument('--n_train', type=int, default=3803957, help='Number of training data (up to 3803957 in gigaword) [default: 3803957]') parser.add_argument('--n_valid', type=int, default=189651, help='Number of validation data (up to 189651 in gigaword) [default: 189651])') parser.add_argument('--batch_size', type=int, default=32, help='Mini batch size [default: 32]') parser.add_argument('--vocab_size', type=int, default=124404, help='Vocabulary size [default: 124404]') parser.add_argument('--emb_dim', type=int, default=256, help='Embedding size [default: 256]') parser.add_argument('--hid_dim', type=int, default=256, help='Hidden state size [default: 256]') parser.add_argument('--maxout_dim', type=int, default=2, help='Maxout size [default: 2]') parser.add_argument('--alloc_mem', type=int, default=10000, help='Amount of memory to allocate [mb] [default: 10000]') args = parser.parse_args() print(args) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu N_EPOCHS = args.n_epochs N_TRAIN = args.n_train N_VALID = args.n_valid BATCH_SIZE = args.batch_size VOCAB_SIZE = args.vocab_size EMB_DIM = args.emb_dim HID_DIM = args.hid_dim MAXOUT_DIM = args.maxout_dim ALLOC_MEM = args.alloc_mem # File paths TRAIN_X_FILE = './data/train.article.txt' TRAIN_Y_FILE = './data/train.title.txt' VALID_X_FILE = './data/valid.article.filter.txt' VALID_Y_FILE = './data/valid.title.filter.txt' # DyNet setting dyparams = dy.DynetParams() dyparams.set_autobatch(True) dyparams.set_random_seed(RANDOM_SEED) dyparams.set_mem(ALLOC_MEM) dyparams.init() # Build dataset dataset = Dataset( TRAIN_X_FILE, TRAIN_Y_FILE, VALID_X_FILE, VALID_Y_FILE, vocab_size=VOCAB_SIZE, batch_size=BATCH_SIZE, n_train=N_TRAIN, n_valid=N_VALID ) VOCAB_SIZE = len(dataset.w2i) print('VOCAB_SIZE', VOCAB_SIZE) # Build model model = dy.Model() trainer = dy.AdamTrainer(model) V = model.add_lookup_parameters((VOCAB_SIZE, EMB_DIM)) encoder = SelectiveBiGRU(model, EMB_DIM, HID_DIM) decoder = AttentionalGRU(model, EMB_DIM, HID_DIM, MAXOUT_DIM, VOCAB_SIZE) # Train model start_time = time.time() for epoch in range(N_EPOCHS): # Train loss_all_train = [] dataset.reset_train_iter() for train_x_mb, train_y_mb in tqdm(dataset.train_iter): # Create a new computation graph dy.renew_cg() associate_parameters([encoder, decoder]) losses = [] for x, t in zip(train_x_mb, train_y_mb): t_in, t_out = t[:-1], t[1:] # Encoder x_embs = [dy.lookup(V, x_t) for x_t in x] hp, hb_1 = encoder(x_embs) # Decoder decoder.set_initial_states(hp, hb_1) t_embs = [dy.lookup(V, t_t) for t_t in t_in] y = decoder(t_embs) # Loss loss = dy.esum( [dy.pickneglogsoftmax(y_t, t_t) for y_t, t_t in zip(y, t_out)] ) losses.append(loss) mb_loss = dy.average(losses) # Forward prop loss_all_train.append(mb_loss.value()) # Backward prop mb_loss.backward() trainer.update() # Valid loss_all_valid = [] dataset.reset_valid_iter() for valid_x_mb, valid_y_mb in dataset.valid_iter: # Create a new computation graph dy.renew_cg() associate_parameters([encoder, decoder]) losses = [] for x, t in zip(valid_x_mb, valid_y_mb): t_in, t_out = t[:-1], t[1:] # Encoder x_embs = [dy.lookup(V, x_t) for x_t in x] hp, hb_1 = encoder(x_embs) # Decoder decoder.set_initial_states(hp, hb_1) t_embs = [dy.lookup(V, t_t) for t_t in t_in] y = decoder(t_embs) # Loss loss = dy.esum( [dy.pickneglogsoftmax(y_t, t_t) for y_t, t_t in zip(y, t_out)] ) losses.append(loss) mb_loss = dy.average(losses) # Forward prop loss_all_valid.append(mb_loss.value()) print('EPOCH: %d, Train Loss: %.3f, Valid Loss: %.3f, Time: %.3f[s]' % ( epoch+1, np.mean(loss_all_train), np.mean(loss_all_valid), time.time()-start_time )) # Save model dy.save('./model_e'+str(epoch+1), [V, encoder, decoder]) with open('./w2i.dump', 'wb') as f_w2i, open('./i2w.dump', 'wb') as f_i2w: pickle.dump(dataset.w2i, f_w2i) pickle.dump(dataset.i2w, f_i2w)
def main(): parser = argparse.ArgumentParser(description='A Neural Attention Model for Abstractive Sentence Summarization in DyNet') parser.add_argument('--gpu', type=str, default='0', help='GPU ID to use. For cpu, set -1 [default: 0]') parser.add_argument('--n_epochs', type=int, default=10, help='Number of epochs [default: 10]') parser.add_argument('--n_train', type=int, default=3803957, help='Number of training data (up to 3803957 in gigaword) [default: 3803957]') parser.add_argument('--n_valid', type=int, default=189651, help='Number of validation data (up to 189651 in gigaword) [default: 189651]') parser.add_argument('--batch_size', type=int, default=32, help='Mini batch size [default: 32]') parser.add_argument('--vocab_size', type=int, default=60000, help='Vocabulary size [default: 60000]') parser.add_argument('--emb_dim', type=int, default=256, help='Embedding size [default: 256]') parser.add_argument('--hid_dim', type=int, default=256, help='Hidden state size [default: 256]') parser.add_argument('--encoder_type', type=str, default='attention', help='Encoder type. bow: Bag-of-words encoder. attention: Attention-based encoder [default: attention]') parser.add_argument('--c', type=int, default=5, help='Window size in neural language model [default: 5]') parser.add_argument('--q', type=int, default=2, help='Window size in attention-based encoder [default: 2]') parser.add_argument('--alloc_mem', type=int, default=4096, help='Amount of memory to allocate [mb] [default: 4096]') args = parser.parse_args() print(args) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu N_EPOCHS = args.n_epochs N_TRAIN = args.n_train N_VALID = args.n_valid BATCH_SIZE = args.batch_size VOCAB_SIZE = args.vocab_size EMB_DIM = args.emb_dim HID_DIM = args.hid_dim ENCODER_TYPE = args.encoder_type C = args.c Q = args.q ALLOC_MEM = args.alloc_mem # File paths TRAIN_X_FILE = './data/train.article.txt' TRAIN_Y_FILE = './data/train.title.txt' VALID_X_FILE = './data/valid.article.filter.txt' VALID_Y_FILE = './data/valid.title.filter.txt' # DyNet setting dyparams = dy.DynetParams() dyparams.set_autobatch(True) dyparams.set_random_seed(RANDOM_STATE) dyparams.set_mem(ALLOC_MEM) dyparams.init() # Build dataset ==================================================================================== w2c = build_word2count(TRAIN_X_FILE, n_data=N_TRAIN) w2c = build_word2count(TRAIN_Y_FILE, w2c=w2c, n_data=N_TRAIN) train_X, w2i, i2w = build_dataset(TRAIN_X_FILE, w2c=w2c, padid=False, eos=True, unksym='<unk>', target=False, n_data=N_TRAIN, vocab_size=VOCAB_SIZE) train_y, _, _ = build_dataset(TRAIN_Y_FILE, w2i=w2i, target=True, n_data=N_TRAIN) valid_X, _, _ = build_dataset(VALID_X_FILE, w2i=w2i, target=False, n_data=N_VALID) valid_y, _, _ = build_dataset(VALID_Y_FILE, w2i=w2i, target=True, n_data=N_VALID) VOCAB_SIZE = len(w2i) OUT_DIM = VOCAB_SIZE print('VOCAB_SIZE:', VOCAB_SIZE) # Build model ====================================================================================== model = dy.Model() trainer = dy.AdamTrainer(model) rush_abs = ABS(model, EMB_DIM, HID_DIM, VOCAB_SIZE, Q, C, encoder_type=ENCODER_TYPE) # Padding train_y = [[w2i['<s>']]*(C-1)+instance_y for instance_y in train_y] valid_y = [[w2i['<s>']]*(C-1)+instance_y for instance_y in valid_y] n_batches_train = math.ceil(len(train_X)/BATCH_SIZE) n_batches_valid = math.ceil(len(valid_X)/BATCH_SIZE) start_time = time.time() for epoch in range(N_EPOCHS): # Train train_X, train_y = shuffle(train_X, train_y) loss_all_train = [] for i in tqdm(range(n_batches_train)): # Create a new computation graph dy.renew_cg() rush_abs.associate_parameters() # Create a mini batch start = i*BATCH_SIZE end = start + BATCH_SIZE train_X_mb = train_X[start:end] train_y_mb = train_y[start:end] losses = [] for x, t in zip(train_X_mb, train_y_mb): t_in, t_out = t[:-1], t[C:] y = rush_abs(x, t_in) loss = dy.esum([dy.pickneglogsoftmax(y_t, t_t) for y_t, t_t in zip(y, t_out)]) losses.append(loss) mb_loss = dy.average(losses) # Forward prop loss_all_train.append(mb_loss.value()) # Backward prop mb_loss.backward() trainer.update() # Valid loss_all_valid = [] for i in range(n_batches_valid): # Create a new computation graph dy.renew_cg() rush_abs.associate_parameters() # Create a mini batch start = i*BATCH_SIZE end = start + BATCH_SIZE valid_X_mb = valid_X[start:end] valid_y_mb = valid_y[start:end] losses = [] for x, t in zip(valid_X_mb, valid_y_mb): t_in, t_out = t[:-1], t[C:] y = rush_abs(x, t_in) loss = dy.esum([dy.pickneglogsoftmax(y_t, t_t) for y_t, t_t in zip(y, t_out)]) losses.append(loss) mb_loss = dy.average(losses) # Forward prop loss_all_valid.append(mb_loss.value()) print('EPOCH: %d, Train Loss: %.3f, Valid Loss: %.3f' % ( epoch+1, np.mean(loss_all_train), np.mean(loss_all_valid) )) # Save model ======================================================================== dy.save('./model_e'+str(epoch+1), [rush_abs]) with open('./w2i.dump', 'wb') as f_w2i, open('./i2w.dump', 'wb') as f_i2w: pickle.dump(w2i, f_w2i) pickle.dump(i2w, f_i2w)
def train_single(self, embedding, type): return dy.pickneglogsoftmax(self.get_graph(embedding), vocab.geti(type))
def main(): parser = argparse.ArgumentParser( description= 'Deep Recurrent Generative Decoder for Abstractive Text Summarization in DyNet' ) parser.add_argument('--gpu', type=str, default='0', help='GPU ID to use. For cpu, set -1 [default: -1]') parser.add_argument('--n_epochs', type=int, default=3, help='Number of epochs [default: 3]') parser.add_argument( '--n_train', type=int, default=3803957, help= 'Number of training examples (up to 3803957 in gigaword) [default: 3803957]' ) parser.add_argument( '--n_valid', type=int, default=189651, help= 'Number of validation examples (up to 189651 in gigaword) [default: 189651])' ) parser.add_argument('--batch_size', type=int, default=32, help='Mini batch size [default: 32]') parser.add_argument('--emb_dim', type=int, default=256, help='Embedding size [default: 256]') parser.add_argument('--hid_dim', type=int, default=256, help='Hidden state size [default: 256]') parser.add_argument('--lat_dim', type=int, default=256, help='Latent size [default: 256]') parser.add_argument( '--alloc_mem', type=int, default=8192, help='Amount of memory to allocate [mb] [default: 8192]') args = parser.parse_args() print(args) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu N_EPOCHS = args.n_epochs N_TRAIN = args.n_train N_VALID = args.n_valid BATCH_SIZE = args.batch_size VOCAB_SIZE = 60000 EMB_DIM = args.emb_dim HID_DIM = args.hid_dim LAT_DIM = args.lat_dim ALLOC_MEM = args.alloc_mem # File paths TRAIN_X_FILE = './data/train.article.txt' TRAIN_Y_FILE = './data/train.title.txt' VALID_X_FILE = './data/valid.article.filter.txt' VALID_Y_FILE = './data/valid.title.filter.txt' # DyNet setting dyparams = dy.DynetParams() dyparams.set_autobatch(True) dyparams.set_random_seed(RANDOM_STATE) dyparams.set_mem(ALLOC_MEM) dyparams.init() # Build dataset ==================================================================================== w2c = build_word2count(TRAIN_X_FILE, n_data=N_TRAIN) w2c = build_word2count(TRAIN_Y_FILE, w2c=w2c, n_data=N_TRAIN) train_X, w2i, i2w = build_dataset(TRAIN_X_FILE, w2c=w2c, padid=False, eos=True, unksym='<unk>', target=False, n_data=N_TRAIN, vocab_size=VOCAB_SIZE) train_y, _, _ = build_dataset(TRAIN_Y_FILE, w2i=w2i, target=True, n_data=N_TRAIN) valid_X, _, _ = build_dataset(VALID_X_FILE, w2i=w2i, target=False, n_data=N_VALID) valid_y, _, _ = build_dataset(VALID_Y_FILE, w2i=w2i, target=True, n_data=N_VALID) VOCAB_SIZE = len(w2i) OUT_DIM = VOCAB_SIZE print(VOCAB_SIZE) # Build model ====================================================================================== model = dy.Model() trainer = dy.AdamTrainer(model) V = model.add_lookup_parameters((VOCAB_SIZE, EMB_DIM)) encoder = BiGRU(model, EMB_DIM, 2 * HID_DIM) decoder = RecurrentGenerativeDecoder(model, EMB_DIM, 2 * HID_DIM, LAT_DIM, OUT_DIM) # Train model ======================================================================================= n_batches_train = math.ceil(len(train_X) / BATCH_SIZE) n_batches_valid = math.ceil(len(valid_X) / BATCH_SIZE) start_time = time.time() for epoch in range(N_EPOCHS): # Train train_X, train_y = shuffle(train_X, train_y) loss_all_train = [] for i in tqdm(range(n_batches_train)): # Create a new computation graph dy.renew_cg() encoder.associate_parameters() decoder.associate_parameters() # Create a mini batch start = i * BATCH_SIZE end = start + BATCH_SIZE train_X_mb = train_X[start:end] train_y_mb = train_y[start:end] losses = [] for x, t in zip(train_X_mb, train_y_mb): t_in, t_out = t[:-1], t[1:] # Encoder x_embs = [dy.lookup(V, x_t) for x_t in x] he = encoder(x_embs) # Decoder t_embs = [dy.lookup(V, t_t) for t_t in t_in] decoder.set_initial_states(he) y, KL = decoder(t_embs) loss = dy.esum([ dy.pickneglogsoftmax(y_t, t_t) + KL_t for y_t, t_t, KL_t in zip(y, t_out, KL) ]) losses.append(loss) mb_loss = dy.average(losses) # Forward prop loss_all_train.append(mb_loss.value()) # Backward prop mb_loss.backward() trainer.update() # Valid loss_all_valid = [] for i in range(n_batches_valid): # Create a new computation graph dy.renew_cg() encoder.associate_parameters() decoder.associate_parameters() # Create a mini batch start = i * BATCH_SIZE end = start + BATCH_SIZE valid_X_mb = valid_X[start:end] valid_y_mb = valid_y[start:end] losses = [] for x, t in zip(valid_X_mb, valid_y_mb): t_in, t_out = t[:-1], t[1:] # Encoder x_embs = [dy.lookup(V, x_t) for x_t in x] he = encoder(x_embs) # Decoder t_embs = [dy.lookup(V, t_t) for t_t in t_in] decoder.set_initial_states(he) y, KL = decoder(t_embs) loss = dy.esum([ dy.pickneglogsoftmax(y_t, t_t) + KL_t for y_t, t_t, KL_t in zip(y, t_out, KL) ]) losses.append(loss) mb_loss = dy.average(losses) # Forward prop loss_all_valid.append(mb_loss.value()) print('EPOCH: %d, Train Loss: %.3f, Valid Loss: %.3f' % (epoch + 1, np.mean(loss_all_train), np.mean(loss_all_valid))) # Save model ====================================================================================== dy.save('./model_e' + str(epoch + 1), [V, encoder, decoder]) with open('./w2i.dump', 'wb') as f_w2i, open('./i2w.dump', 'wb') as f_i2w: pickle.dump(w2i, f_w2i) pickle.dump(i2w, f_i2w)