return accuracy if __name__ == "__main__": # set random number generator seed np.random.seed(NUMERO_DE_MATRICULA) # set floating point formatting when printing np.set_printoptions(formatter={"float": "{: 0.6f}".format}) # load data x = DataSets.NOME_DO_DATASET.input d = DataSets.NOME_DO_DATASET.output # define the network parameters n = TAXA_DE_APRENDIZADO g = ActivationFunctions.FUNCAO_DE_ATIVACAO # create the neural network nn = Perceptron(n, g) # train the neural network w = nn.train(x, d) # evaluate the neural network acc = nn.evaluate(w, x, d) # plot epoch versus error data PlotUtils.plot(nn.plot_data_x, "epoch", nn.plot_data_y, "error")
correct = correct + 1 accuracy = float(correct) / float(total) print('Accuracy: {:.2f}% ({}/{})'.format(100.0 * accuracy, correct, total)) return accuracy if __name__ == '__main__': # set random number generator seed np.random.seed(42) # set floating point formatting when printing np.set_printoptions(formatter={'float': '{: 0.6f}'.format}) # load data x = DataSets.BLOOD_TRANSFUSION.input d = DataSets.BLOOD_TRANSFUSION.output # create the neural network nn = Adaline() # train the neural network w = nn.train(x, d) # evaluate the neural network acc = nn.evaluate(w, x, d) # plot epoch versus error data PlotUtils.plot(nn.plot_data_x, 'epoch', nn.plot_data_y, 'mse')
for i in range(0, len(x)): y = self.test(w, x[i]) if (y == d[i]): correct = correct + 1 accuracy = 100.0 * (float(correct) / float(total)) print(f"Accuracy: {accuracy:.2f}% ({correct}/{total})") return accuracy if __name__ == "__main__": # load data x = DataSets.TIC_TAC_TOE_ENDGAME.input d = DataSets.TIC_TAC_TOE_ENDGAME.output # define the network parameters n = 1e-4 g = ActivationFunctions.heaviside e = 1e-10 # create the neural network nn = Adaline(n, g, e) # train the neural network w = nn.train(x, d) # evaluate the neural network acc = nn.evaluate(w, x, d) # plot epoch versus error data PlotUtils.plot(nn.plot_data_x, "epoch", nn.plot_data_y, "mse")
y = self.test(w, x[i]) if (y == d[i]): correct = correct + 1 accuracy = float(correct) / float(total) print('Accuracy: {:.2f}% ({}/{})'.format(100.0 * accuracy, correct, total)) return accuracy if __name__ == '__main__': # set random number generator seed np.random.seed(42) # set floating point formatting when printing np.set_printoptions(formatter={'float': '{: 0.6f}'.format}) # load data x = DataSets.LOGIC_GATE_AND.input d = DataSets.LOGIC_GATE_AND.output # create the neural network nn = Perceptron() # train the neural network w = nn.train(x, d) # evaluate the neural network acc = nn.evaluate(w, x, d) # plot epoch versus error data PlotUtils.plot(nn.plot_data_x, 'epoch', nn.plot_data_y, 'error')