def f(x): return _poly.eval(a, x)  # evaluate polynomial a as a function

xl, xu = -5, 5
#estimate plotting x range
xlo = x0 - (xn - x0) / 50.
xhi = xn + (xn - x0) / 50.

#plot function f(x)
m = 1000  #number of points for smooth plotting effect
xpts = np.linspace(xlo, xhi, m)
plt.plot(xpts, f(xpts), 'b', label='true function')

#draw vertical segments & interpolation points for integral estimate
#TO DO...

#fill area for integral estimate
xpts = np.linspace(x0, xn, m)
parabolic_coefs = _polyreg.curvefit(axpts, aypts, order=2)
ypts = _poly.eval(parabolic_coefs, xpts)
plt.fill_between(xpts,
                 ypts,
                 facecolor='g',
                 alpha=.2,
                 edgecolor='g',
                 label='integral estimate')

#fill area for error
#TO DO...

#show plot w/ title, legend, etc.
plt.title("Single application of Simpson's 1/3 integration rule")
plt.legend(loc="upper left", shadow=True)
plt.xlabel('x-axis')
plt.ylabel('y-axis')
Esempio n. 3
0
def f(x):
    return _poly.eval(a, x)
def f(x): return _poly.eval(a, x)


# Graphical Solution

xl, xu = -5, 5