Esempio n. 1
0
def test_checkpointing(nprocs, proposal_name):
    """Performs the same checkpointing test as for the PTSampler.
    """
    model = Model()
    proposal = _setup_proposal(model, proposal_name)
    _test_checkpointing(Model, nprocs, proposals=[proposal],
                        init_iters=STABILITY_DURATION-2)
Esempio n. 2
0
def test_clear_memory(proposal_name, nprocs):
    """Runs the PTSampler ``test_clear_memoory`` using the adaptive normal
    proposal.
    """
    model = Model()
    proposal = _setup_proposal(proposal_name, model.params, model.prior_bounds)
    _test_clear_memory(Model, nprocs, SWAP_INTERVAL, proposals=[proposal])
Esempio n. 3
0
def test_checkpointing(nprocs, proposal_name):
    """Performs the same checkpointing test as for the PTSampler, but using
    the adaptive normal proposal.
    """
    model = Model()
    proposal = _setup_proposal(model, proposal_name)
    _test_checkpointing(Model, nprocs, proposals=[proposal])
Esempio n. 4
0
def test_clear_memory(nprocs, proposal_name):
    """Runs the PTSampler ``test_clear_memoory`` using the adaptive normal
    proposal.
    """
    model = Model()
    proposal = _setup_proposal(model, proposal_name)
    _test_clear_memory(Model, nprocs, SWAP_INTERVAL, proposals=[proposal])
Esempio n. 5
0
def test_checkpointing(proposal_name, nprocs):
    """Performs the same checkpointing test as for the PTSampler, but using
    the adaptive normal proposal.
    """
    model = Model()
    proposal = _setup_proposal(proposal_name, model.params, model.prior_bounds)
    _test_checkpointing(Model, nprocs, proposals=[proposal])
Esempio n. 6
0
def test_seed(nprocs, proposal_name):
    """Runs the PTSampler ``test_seed`` using the adaptive normal proposal.
    """
    model = Model()
    proposal = _setup_proposal(model, proposal_name)
    _test_seed(Model, nprocs, proposals=[proposal],
               init_iters=STABILITY_DURATION-2)
Esempio n. 7
0
def test_chains(name, nprocs):
    """Runs the PTSampler ``test_chains`` test using the adaptive proposal.
    """
    model = Model()
    # we'll just use the adaptive normal for one of the params, to test
    # that using mixed proposals works
    proposal = _setup_proposal(model, name,  params=[list(model.params)[0]])
    _test_chains(Model, nprocs, SWAP_INTERVAL, proposals=[proposal])
Esempio n. 8
0
def test_scale_changes(nprocs, proposal_name, model=None):
    """Tests that the eigenvalues change after a few jumps for the type
    of proposal specified by ``proposal_name``.
    """
    # use the test model
    if model is None:
        model = Model()
    proposal = _setup_proposal(model, proposal_name)
    _test_scale_changes(nprocs, proposal, model)
Esempio n. 9
0
def test_std_changes(nprocs, proposal_name, model=None):
    """Tests that the standard deviation changes after a few jumps for the type
    of proposal specified by ``proposal_name``.
    """
    # use the test model
    if model is None:
        model = Model()
    proposal = _setup_proposal(model, proposal_name)
    _test_std_changes(nprocs, proposal, model)
Esempio n. 10
0
def test_checkpointing(proposal_name, nprocs):
    """Performs the same checkpointing test as for the PTSampler, but using
    the adaptive normal proposal.
    """
    model = Model()
    proposal = _setup_proposal(model, proposal_name, model.prior_bounds)
    _test_checkpointing(Model,
                        nprocs,
                        proposals=[proposal],
                        init_iters=STABILITY_DURATION)
Esempio n. 11
0
def test_chains(nprocs, proposal_name):
    """Runs the PTSampler ``test_chains`` test using the adaptive normal
    proposal.
    """
    model = Model()
    # we'll just use the adaptive normal for one of the params, to test
    # that using mixed proposals works
    proposal = _setup_proposal(model, proposal_name,
                               params=[list(model.params)[0]])
    _test_chains(Model, nprocs, SWAP_INTERVAL, proposals=[proposal],
                 init_iters=STABILITY_DURATION-2)
Esempio n. 12
0
def test_chains(proposal_name, nprocs):
    """Runs the PTSampler ``test_chains`` test using the bounded normal
    proposal.
    """
    model = Model()
    # we'll just the bounded normal proposal for one of the parameters,
    # to test that using mixed proposals works
    param = list(model.params)[0]
    proposal = _setup_proposal(proposal_name, [param],
                               {param: model.prior_bounds[param]})
    _test_chains(Model, nprocs, SWAP_INTERVAL, proposals=[proposal])
Esempio n. 13
0
def test_clear_memory(proposal_name, nprocs):
    """Runs the PTSampler ``test_clear_memoory`` using the adaptive normal
    proposal.
    """
    model = Model()
    proposal = _setup_proposal(model, proposal_name, model.prior_bounds)
    _test_clear_memory(Model,
                       nprocs,
                       SWAP_INTERVAL,
                       proposals=[proposal],
                       init_iters=STABILITY_DURATION)
Esempio n. 14
0
def test_cov_changes(name, nprocs, diagonal, componentwise, model=None):
    """Tests that the covariance changes after a few jumps."""
    # use the test model
    if not diagonal and name in ['at_adaptive_bounded_normal',
                                 'at_adaptive_angular']:
        return
    if model is None:
        model = Model()
    proposal = _setup_proposal(model, name, diagonal=diagonal,
                               componentwise=componentwise)
    if proposal.isdiagonal:
        _test_std_changes(nprocs, proposal, model)
    else:
        _test_cov_changes(nprocs, proposal, model)
Esempio n. 15
0
def test_jumps_in_bounds(proposal_name, xmin, xmax):
    """Runs the proposal for a couple of steps and checks that suggested
    eigenvector jumps are in bounds.
    """
    model = Model()
    bnd = Boundaries((xmin, xmax))
    model.prior_bounds.update({'x0': bnd})
    model.prior_dist.update({'x0': stats.uniform(bnd.lower, abs(bnd))})

    bounds = {'x0': (xmin, xmax), 'x1': (-40., 40.0)}
    # create the proposal and the sampler
    proposal = _setup_proposal(model, proposal_name, bounds)
    sampler = _create_sampler(model, nprocs=1, proposals=[proposal])
    # Run the sampler through its stability and adaptation phase
    # This will throw an exception in case any suggested points out of bounds
    sampler.run(STABILITY_DURATION + ADAPTATION_DURATION)
Esempio n. 16
0
def test_seed(proposal_name, nprocs):
    """Runs the PTSampler ``test_seed`` using the adaptive normal proposal.
    """
    model = Model()
    proposal = _setup_proposal(proposal_name, model.params, model.prior_bounds)
    _test_seed(Model, nprocs, proposals=[proposal])
Esempio n. 17
0
def test_seed(nprocs, proposal_name):
    """Runs the PTSampler ``test_seed`` using the adaptive normal proposal.
    """
    model = Model()
    proposal = _setup_proposal(model, proposal_name)
    _test_seed(Model, nprocs, proposals=[proposal])
Esempio n. 18
0
def test_seed(name, nprocs, componentwise):
    """Runs the PTSampler ``test_seed`` using the adaptive proposal.
    """
    model = Model()
    proposal = _setup_proposal(model, name, componentwise=componentwise)
    _test_seed(Model, nprocs, proposals=[proposal])