Esempio n. 1
0
def main(outfile=None, min_count=None, aggregate=None):
    """ Main function for training and evaluating AAE methods on MDP data """
    print("Loading data from", DATA_PATH)
    playlists = playlists_from_slices(DATA_PATH, n_jobs=4)
    print("Unpacking json data...")
    if aggregate is not None:
        aggregate =['artist_name', 'track_name', 'album_name']
        print("Using aggegated metadata {}".format(aggregate))
    else:
        print("Aggrgate={}".fomat(aggregate))
        print("Using title only")
    bags_of_tracks, pids, side_info = unpack_playlists(playlists, aggregate)
    del playlists
    bags = Bags(bags_of_tracks, pids, side_info)
    log("Whole dataset:", logfile=outfile)
    log(bags, logfile=outfile)
    train_set, dev_set, y_test = prepare_evaluation(bags,
                                                    n_items=N_ITEMS,
                                                    min_count=min_count)

    log("Train set:", logfile=outfile)
    log(train_set, logfile=outfile)

    log("Dev set:", logfile=outfile)
    log(dev_set, logfile=outfile)

    # THE GOLD (put into sparse matrix)
    y_test = lists2sparse(y_test, dev_set.size(1)).tocsr(copy=False)

    # the known items in the test set, just to not recompute
    x_test = lists2sparse(dev_set.data, dev_set.size(1)).tocsr(copy=False)

    for model in MODELS:
        log('=' * 78, logfile=outfile)
        log(model, logfile=outfile)

        # Training
        model.train(train_set)

        # Prediction
        y_pred = model.predict(dev_set)

        # Sanity-fix #1, make sparse stuff dense, expect array
        if sp.issparse(y_pred):
            y_pred = y_pred.toarray()
        else:
            y_pred = np.asarray(y_pred)

        # Sanity-fix, remove predictions for already present items
        y_pred = remove_non_missing(y_pred, x_test, copy=False)

        # Evaluate metrics
        results = evaluate(y_test, y_pred, METRICS, batch_size=1000)

        log("-" * 78, logfile=outfile)
        for metric, stats in zip(METRICS, results):
            log("* {}: {} ({})".format(metric, *stats), logfile=outfile)

        log('=' * 78, logfile=outfile)
Esempio n. 2
0
def main(outfile=None, min_count=None):
    """ Main function for training and evaluating AAE methods on Reuters data """
    print("Loading data from", DATA_PATH)
    bags = Bags.load_tabcomma_format(DATA_PATH, unique=True)
    log("Whole dataset:", logfile=outfile)
    log(bags, logfile=outfile)
    train_set, dev_set, y_test = prepare_evaluation(bags,
                                                    min_count=min_count)

    log("Train set:", logfile=outfile)
    log(train_set, logfile=outfile)

    log("Dev set:", logfile=outfile)
    log(dev_set, logfile=outfile)

    # THE GOLD (put into sparse matrix)
    y_test = lists2sparse(y_test, dev_set.size(1)).tocsr(copy=False)

    # the known items in the test set, just to not recompute
    x_test = lists2sparse(dev_set.data, dev_set.size(1)).tocsr(copy=False)

    for model in MODELS:
        log('=' * 78, logfile=outfile)
        log(model, logfile=outfile)

        # Training
        model.train(train_set)

        # Prediction
        y_pred = model.predict(dev_set)

        # Sanity-fix #1, make sparse stuff dense, expect array
        if sp.issparse(y_pred):
            y_pred = y_pred.toarray()
        else:
            y_pred = np.asarray(y_pred)

        # Sanity-fix, remove predictions for already present items
        y_pred = remove_non_missing(y_pred, x_test, copy=False)

        # Evaluate metrics
        results = evaluate(y_test, y_pred, METRICS)

        log("-" * 78, logfile=outfile)
        for metric, stats in zip(METRICS, results):
            log("* {}: {} ({})".format(metric, *stats), logfile=outfile)

        log('=' * 78, logfile=outfile)
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--model',
        type=str,
        defaule='aae',
        # All possible method should appear here
        choices=['cm', 'svd', 'ae', 'aae', 'mlp'],
        help="Specify the model to use [aae]")
    parser.add_argument('--epochs',
                        type=int,
                        default=20,
                        help="Specify the number of training epochs [50]")
    parser.add_argument('--hidden',
                        type=int,
                        default=200,
                        help="Number of hidden units [100]")
    parser.add_argument('--no-title',
                        action='store_false',
                        default=True,
                        dest='use_title',
                        help="Do not use the playlist titles")
    parser.add_argument('--max-items',
                        type=int,
                        default=75000,
                        help="Limit the max number of considered items")
    parser.add_argument(
        '--vocab-size',
        type=int,
        default=50000,
        help="Limit the max number of distinct condition words")
    parser.add_argument('-j',
                        '--jobs',
                        type=int,
                        default=4,
                        help="Number of jobs for data loading [4].")
    parser.add_argument('-o',
                        '--outfile',
                        default="submission.csv",
                        type=str,
                        help="Write submissions to this path")
    parser.add_argument('--use-embedding',
                        default=False,
                        action='store_true',
                        help="Use embedding (SGNS GoogleNews) [false]")
    parser.add_argument('--dont-aggregate',
                        action='store_false',
                        dest='aggregate',
                        default=True,
                        help="Aggregate track metadata as side info input")
    parser.add_argument('--debug',
                        action='store_true',
                        default=False,
                        help="Activate debug mode, run only on small sample")
    parser.add_argument(
        '-x',
        '--exclude',
        type=argparse.FileType('r'),
        default=None,
        help="Path to file with slice filenames to exclude for training")
    parser.add_argument(
        '--dev',
        type=str,
        default=None,
        help='Path to dev set, use in combination with (-x, --exclude)')
    parser.add_argument('--no-idf',
                        action='store_false',
                        default=True,
                        dest='use_idf',
                        help="Do **not** use idf re-weighting")
    parser.add_argument('--lr',
                        type=float,
                        default=0.001,
                        help="Initial learning rate [0.001]")
    parser.add_argument('--code',
                        type=int,
                        default=100,
                        help="Code dimension [50]")
    args = parser.parse_args()

    # Either exclude and dev set, or no exclude and test set
    assert (args.dev is None) == (args.exclude is None)
    if args.dev is not None:
        print("Making submission for dev set:", args.dev)
        assert os.path.isfile(args.dev)

    # Dump args into submission file
    if os.path.exists(args.outfile) and \
            input("Path '{}' exists. Overwrite? [y/N]"
                  .format(args.outfile)) != 'y':
        exit(-1)

    with open(args.outfile, 'w') as out:
        print('#', args, file=out)

    if args.use_embedding:
        print("Loading embedding:", W2V_PATH)
        vectors = KeyedVectors.load_word2vec_format(W2V_PATH,
                                                    binary=W2V_IS_BINARY)
    else:
        vectors = None

    # Create the model as specified by command line args
    # Count-based never uses title
    # Decoding recommender always uses title

    tfidf_params = {'max_features': args.vocab_size, 'use_idf': args.use_idf}

    model = {
        'cm':
        Countbased(),
        'svd':
        SVDRecommender(use_title=args.use_title),
        'ae':
        AAERecommender(use_title=args.use_title,
                       adversarial=False,
                       n_hidden=args.hidden,
                       n_code=args.code,
                       n_epochs=args.epochs,
                       embedding=vectors,
                       lr=args.lr,
                       tfidf_params=tfidf_params),
        'aae':
        AAERecommender(
            use_title=args.use_title,
            adversarial=True,
            n_hidden=args.hidden,
            n_code=args.code,
            n_epochs=args.epochs,
            gen_lr=args.lr,
            reg_lr=args.lr,  # same gen and reg lrs
            embedding=vectors,
            tfidf_params=tfidf_params),
        'mlp':
        DecodingRecommender(n_epochs=args.epochs,
                            n_hidden=args.hidden,
                            embedding=vectors,
                            tfidf_params=tfidf_params)
    }[args.model]

    track_attrs = TRACK_INFO if args.aggregate else None

    if args.exclude is not None:
        # Dev set case, exclude dev set data
        exclude = [line.strip() for line in args.exclude]
    else:
        # Real submission case, do not exclude any training data
        exclude = None

    # = Training =
    print("Loading data from {} using {} jobs".format(DATA_PATH, args.jobs))
    playlists = playlists_from_slices(DATA_PATH,
                                      n_jobs=args.jobs,
                                      debug=args.debug,
                                      without=exclude)
    print("Unpacking playlists")
    train_set = Bags(*unpack_playlists(playlists, aggregate=track_attrs))

    print("Building vocabulary of {} most frequent items".format(
        args.max_items))
    vocab, __counts = train_set.build_vocab(max_features=args.max_items,
                                            apply=False)
    train_set = train_set.apply_vocab(vocab)
    print("Training set:", train_set, sep='\n')

    print("Training for {} epochs".format(args.epochs))
    try:
        model.train(train_set)
    except KeyboardInterrupt:
        print("Training interrupted by keyboard, pass.")

    # Not required anymore
    del train_set

    # = Predictions =
    if args.dev is not None:
        print("Loading and unpacking DEV set")
        data, index2playlist, side_info = unpack_playlists(
            load(args.dev), aggregate=track_attrs)
    else:
        print("Loading and unpacking test set")
        data, index2playlist, side_info = unpack_playlists(
            load(TEST_PATH), aggregate=track_attrs)
    test_set = Bags(data, index2playlist, side_info)
    # Apply same vocabulary as in training
    test_set = test_set.apply_vocab(vocab)
    print("Test set:", test_set, sep='\n')

    pred = model.predict(test_set)
    if sp.issparse(pred):
        pred = pred.toarray()
    else:
        pred = np.asarray(pred)
    print("Scaling and removing non-missing items")
    pred = remove_non_missing(pred, test_set.tocsr(), copy=False)

    index2trackid = {v: k for k, v in vocab.items()}
    print("Making submission:", args.outfile)
    make_submission(pred, index2playlist, index2trackid, outfile=args.outfile)
    print("Success.")
    print("Make sure to verify the submission format via", VERIFY_SCRIPT)
Esempio n. 4
0
def main(outfile=None, min_count=None, aggregate=None):
    """ Main function for training and evaluating AAE methods on MDP data """
    print("Loading data from", DATA_PATH)
    playlists = playlists_from_slices(DATA_PATH, n_jobs=4)
    print("Unpacking json data...")
    bags_of_tracks, pids, side_info = unpack_playlists_for_models_concatenated(
        playlists)

    del playlists
    bags = Bags(data=bags_of_tracks, owners=pids, owner_attributes=side_info)
    if args.compute_mi:
        from sklearn.metrics import mutual_info_score
        print("Computing MI")
        X = bags.build_vocab(min_count=args.min_count,
                             max_features=None).tocsr()
        C = X.T @ X
        print("(Pairwise) mutual information:",
              mutual_info_score(None, None, contingency=C))
        # Exit in this case
        print("Bye.")
        exit(0)

    log("Whole dataset:", logfile=outfile)
    log(bags, logfile=outfile)
    train_set, dev_set, y_test = prepare_evaluation(bags,
                                                    n_items=N_ITEMS,
                                                    min_count=min_count)

    log("Train set:", logfile=outfile)
    log(train_set, logfile=outfile)

    log("Dev set:", logfile=outfile)
    log(dev_set, logfile=outfile)

    # THE GOLD (put into sparse matrix)
    y_test = lists2sparse(y_test, dev_set.size(1)).tocsr(copy=False)

    # the known items in the test set, just to not recompute
    x_test = lists2sparse(dev_set.data, dev_set.size(1)).tocsr(copy=False)

    for model in MODELS:
        log('=' * 78, logfile=outfile)
        log(model, logfile=outfile)
        log(model.model_params, logfile=outfile)

        # Training
        model.train(train_set)
        print("training finished")

        # Prediction
        y_pred = model.predict(dev_set)
        print("prediction finished")

        print(" prediction sparse?:", sp.issparse(y_pred))
        # Sanity-fix #1, make sparse stuff dense, expect array
        if sp.issparse(y_pred):
            y_pred = y_pred.toarray()
        else:
            y_pred = np.asarray(y_pred)

        print("remove non-missing:")
        # Sanity-fix, remove predictions for already present items
        y_pred = remove_non_missing(y_pred, x_test, copy=False)

        print("evaluate:")
        # Evaluate metrics
        results = evaluate(y_test, y_pred, METRICS, batch_size=500)

        print("metrics: ")
        log("-" * 78, logfile=outfile)
        for metric, stats in zip(METRICS, results):
            log("* {}: {} ({})".format(metric, *stats), logfile=outfile)

        log('=' * 78, logfile=outfile)
Esempio n. 5
0
def main(outfile=None, min_count=None, drop=1):
    """ Main function for training and evaluating AAE methods on Reuters data """
    print("Loading data from", DATA_PATH)
    bags = Bags.load_tabcomma_format(DATA_PATH, unique=True)
    if args.compute_mi:
        from aaerec.utils import compute_mutual_info
        print("[MI] Dataset: Reuters")
        print("[MI] min Count:", min_count)
        tmp = bags.build_vocab(min_count=min_count, max_features=None)
        mi = compute_mutual_info(tmp,
                                 conditions=None,
                                 include_labels=True,
                                 normalize=True)
        with open('mi.csv', 'a') as mifile:
            print('Reuters', min_count, mi, sep=',', file=mifile)
        print("=" * 78)
        exit(0)
    log("Whole dataset:", logfile=outfile)
    log(bags, logfile=outfile)
    train_set, dev_set, y_test = prepare_evaluation(bags,
                                                    min_count=min_count,
                                                    drop=drop)

    log("Train set:", logfile=outfile)
    log(train_set, logfile=outfile)

    log("Dev set:", logfile=outfile)
    log(dev_set, logfile=outfile)

    # THE GOLD (put into sparse matrix)
    y_test = lists2sparse(y_test, dev_set.size(1)).tocsr(copy=False)

    # the known items in the test set, just to not recompute
    x_test = lists2sparse(dev_set.data, dev_set.size(1)).tocsr(copy=False)

    for model in MODELS:
        log('=' * 78, logfile=outfile)
        log(model, logfile=outfile)

        # Training
        model.train(train_set)

        # Prediction
        y_pred = model.predict(dev_set)

        # Sanity-fix #1, make sparse stuff dense, expect array
        if sp.issparse(y_pred):
            y_pred = y_pred.toarray()
        else:
            y_pred = np.asarray(y_pred)

        # Sanity-fix, remove predictions for already present items
        y_pred = remove_non_missing(y_pred, x_test, copy=False)

        # Evaluate metrics
        results = evaluate(y_test, y_pred, METRICS)

        log("-" * 78, logfile=outfile)
        for metric, stats in zip(METRICS, results):
            log("* {}: {} ({})".format(metric, *stats), logfile=outfile)

        log('=' * 78, logfile=outfile)