Esempio n. 1
0
def get_faulty_mqtt_SMM():
    from aalpy.automata import StochasticMealyMachine, StochasticMealyState

    s0 = StochasticMealyState('s0')
    s1 = StochasticMealyState('s1')
    s2 = StochasticMealyState('s2')

    s0.transitions['connect'].append((s1, 'CONNACK', 1.))
    s0.transitions['disconnect'].append((s0, 'CONCLOSED', 1.))
    s0.transitions['publish'].append((s0, 'CONCLOSED', 1.))
    s0.transitions['subscribe'].append((s0, 'CONCLOSED', 1.))
    s0.transitions['unsubscribe'].append((s0, 'CONCLOSED', 1.))

    s1.transitions['connect'].append((s0, 'CONCLOSED', 1.))
    s1.transitions['disconnect'].append((s0, 'CONCLOSED', 1.))
    s1.transitions['publish'].append((s1, 'PUBACK', 0.9))
    s1.transitions['publish'].append((s0, 'CONCLOSED', 0.1))
    s1.transitions['subscribe'].append((s2, 'SUBACK', 1.))
    s1.transitions['unsubscribe'].append((s1, 'UNSUBACK', 1.))

    s2.transitions['connect'].append((s0, 'CONCLOSED', 1.))
    s2.transitions['disconnect'].append((s0, 'CONCLOSED', 1.))
    s2.transitions['publish'].append((s2, 'PUBLISH_PUBACK', 1.))
    s2.transitions['subscribe'].append((s2, 'SUBACK', 1.))
    s2.transitions['unsubscribe'].append((s1, 'UNSUBACK', 0.8))
    s2.transitions['unsubscribe'].append((s2, 'SUBACK', 0.2))

    smm = StochasticMealyMachine(s0, [s0, s1, s2])

    return smm
Esempio n. 2
0
def get_minimal_faulty_coffee_machine_SMM():
    s0 = StochasticMealyState('s0')
    s1 = StochasticMealyState('s1')

    s0.transitions['but'].append((s0, 'init', 1.))
    s0.transitions['coin'].append((s1, 'beep', 1.))
    s1.transitions['but'].append((s0, 'init', 0.1))
    s1.transitions['but'].append((s0, 'coffee', 0.9))
    s1.transitions['coin'].append((s1, 'beep', 1.))

    smm = StochasticMealyMachine(s0, [s0, s1])

    return smm
Esempio n. 3
0
def get_small_gridworld():
    from aalpy.automata import StochasticMealyMachine, StochasticMealyState

    s0 = StochasticMealyState('s0')
    s1 = StochasticMealyState('s1')
    s2 = StochasticMealyState('s2')
    s3 = StochasticMealyState('s3')

    p_g = 0.8
    p_m = 0.6

    # gridworld of the form
    # W W W W with a start in the top left
    # W G M W states like s0 s1
    # W M G W             s2 s3
    # W W W W

    s0.transitions['north'].append((s0, 'wall', 1.))
    s0.transitions['west'].append((s0, 'wall', 1.))
    s0.transitions['east'].append((s1, 'mud', p_m))
    s0.transitions['east'].append((s3, 'grass', 1 - p_m))
    s0.transitions['south'].append((s2, 'mud', p_m))
    s0.transitions['south'].append((s3, 'grass', 1 - p_m))

    s1.transitions['north'].append((s1, 'wall', 1.))
    s1.transitions['east'].append((s1, 'wall', 1.))
    s1.transitions['west'].append((s0, 'grass', p_g))
    s1.transitions['west'].append((s2, 'mud', 1 - p_g))
    s1.transitions['south'].append((s3, 'grass', p_g))
    s1.transitions['south'].append((s2, 'mud', 1 - p_g))

    s2.transitions['south'].append((s2, 'wall', 1.))
    s2.transitions['west'].append((s2, 'wall', 1.))
    s2.transitions['east'].append((s3, 'grass', p_g))
    s2.transitions['east'].append((s1, 'mud', 1 - p_g))
    s2.transitions['north'].append((s0, 'grass', p_g))
    s2.transitions['south'].append((s1, 'mud', 1 - p_g))

    s3.transitions['south'].append((s3, 'wall', 1.))
    s3.transitions['east'].append((s3, 'wall', 1.))
    s3.transitions['west'].append((s2, 'mud', p_m))
    s3.transitions['west'].append((s0, 'grass', 1 - p_m))
    s3.transitions['north'].append((s1, 'mud', p_m))
    s3.transitions['north'].append((s0, 'grass', 1 - p_m))

    smm = StochasticMealyMachine(s0, [s0, s1, s2, s3])

    return smm
Esempio n. 4
0
def get_faulty_coffee_machine_SMM():
    from aalpy.automata import StochasticMealyMachine, StochasticMealyState

    s0 = StochasticMealyState('s0')
    s1 = StochasticMealyState('s1')
    s2 = StochasticMealyState('s2')

    s0.transitions['but'].append((s0, 'init', 1.))
    s0.transitions['coin'].append((s1, 'beep', 1.))
    s1.transitions['but'].append((s0, 'init', 0.1))
    s1.transitions['but'].append((s2, 'coffee', 0.9))
    s1.transitions['coin'].append((s1, 'beep', 1.))
    s2.transitions['but'].append((s0, 'init', 1.))
    s2.transitions['coin'].append((s1, 'beep', 1.))

    smm = StochasticMealyMachine(s0, [s0, s1, s2])

    return smm
Esempio n. 5
0
def to_smm():
    # CC2640R2-no-feature-req.dot
    # {'mtu_req', 'pairing_req',} have 0.3 percent chance of looping to initial state
    moore_mdp_state_map = dict()
    initial_mdp_state = None
    for state in model.states:
        mdp_state = StochasticMealyState(state.state_id)
        moore_mdp_state_map[state.prefix] = mdp_state
        if not state.prefix:
            initial_mdp_state = mdp_state

    assert initial_mdp_state

    for state in model.states:
        mdp_state = moore_mdp_state_map[state.prefix]
        state_num = int(mdp_state.state_id[1:])

        for i in alphabet:
            reached_state = state.transitions[i].prefix
            correct_output = state.output_fun[i]
            # if i in {'pairing_req', 'mtu_req'} and mdp_state.output != moore_mdp_state_map[reached_moore].output:
            if state_num % 6 == 0:
                last_out = model.compute_output_seq(
                    model.initial_state,
                    state.prefix[:-1]) if state.prefix else "NO_RESPONSE"
                if not last_out or last_out == correct_output:
                    last_out = 'NO_RESPONSE'
                mdp_state.transitions[i].append((mdp_state, last_out[-1], 0.2))
                mdp_state.transitions[i].append(
                    (moore_mdp_state_map[reached_state], correct_output, 0.8))
            if state_num % 5 == 0 and i in {
                    'length_req', 'length_rsp', 'feature_rsp'
            } and len(state.prefix) == 2:
                mdp_state.transitions[i].append(
                    (moore_mdp_state_map[model.initial_state.prefix],
                     'SYSTEM_CRASH', 0.1))
                mdp_state.transitions[i].append(
                    (moore_mdp_state_map[reached_state], correct_output, 0.9))
            else:
                mdp_state.transitions[i].append(
                    (moore_mdp_state_map[reached_state], correct_output, 1.))

    mdp = StochasticMealyMachine(initial_mdp_state,
                                 list(moore_mdp_state_map.values()))
    return mdp
Esempio n. 6
0
    def generate_hypothesis(self):
        """Generates the hypothesis from the observation table.
        :return: current hypothesis

        Args:

        Returns:

        """
        r_state_map = dict()
        state_counter = 0
        for r in self.compatibility_classes_representatives:
            if self.automaton_type == 'mdp':
                r_state_map[r] = MdpState(state_id=f's{state_counter}', output=r[-1])
            else:
                r_state_map[r] = StochasticMealyState(state_id=f's{state_counter}')
            r_state_map[r].prefix = r

            state_counter += 1
        if self.automaton_type == 'mdp':
            r_state_map['chaos'] = MdpState(state_id=f's{state_counter}', output='chaos')
            for i in self.input_alphabet:
                r_state_map['chaos'].transitions[i[0]].append((r_state_map['chaos'], 1.))
        else:
            r_state_map['chaos'] = StochasticMealyState(state_id=f'chaos')
            for i in self.input_alphabet:
                r_state_map['chaos'].transitions[i[0]].append((r_state_map['chaos'], 'chaos', 1.))

        for s in self.compatibility_classes_representatives:
            for i in self.input_alphabet:
                freq_dict = self.T[s][i]

                total_sum = sum(freq_dict.values())

                origin_state = s
                if self.strategy == 'classic' and not self.teacher.complete_query(s, i) \
                        or self.strategy != 'classic' and i not in self.T[s]:
                    if self.automaton_type == 'mdp':
                        r_state_map[origin_state].transitions[i[0]].append((r_state_map['chaos'], 1.))
                    else:
                        r_state_map[origin_state].transitions[i[0]].append((r_state_map['chaos'], 'chaos', 1.))
                else:
                    if len(freq_dict.items()) == 0:
                        if self.automaton_type == 'mdp':
                            r_state_map[origin_state].transitions[i[0]].append((r_state_map['chaos'], 1.))
                        else:
                            r_state_map[origin_state].transitions[i[0]].append((r_state_map['chaos'], 'chaos', 1.))
                    else:
                        for output, frequency in freq_dict.items():
                            new_state = self.get_representative(s + i + tuple([output]))
                            if self.automaton_type == 'mdp':
                                r_state_map[origin_state].transitions[i[0]].append(
                                    (r_state_map[new_state], frequency / total_sum))
                            else:
                                r_state_map[origin_state].transitions[i[0]].append(
                                    (r_state_map[new_state], output, frequency / total_sum))

        if self.automaton_type == 'mdp':
            return Mdp(r_state_map[self.get_representative(self.initial_output)], list(r_state_map.values()))
        else:
            return StochasticMealyMachine(r_state_map[tuple()], list(r_state_map.values()))
Esempio n. 7
0
def generate_random_smm(num_states,
                        input_size,
                        output_size,
                        possible_probabilities=None):
    """
    Generates random MDP.

    Args:

        num_states: number of states
        input_size: number of inputs
        output_size: number of outputs
        possible_probabilities: list of possible probability pairs to choose from

    Returns:

        random SMM

    """

    inputs = [f'i{i + 1}' for i in range(input_size)]
    outputs = [f'o{i + 1}' for i in range(output_size)]

    if not possible_probabilities:
        possible_probabilities = [(1., ), (1., ), (1., ), (0.9, 0.1),
                                  (0.8, 0.2), (0.7, 0.3), (0.8, 0.1, 0.1),
                                  (0.7, 0.2, 0.1), (0.6, 0.2, 0.1, 0.1)]
        # ensure that there are no infinite loops
        possible_probabilities = [
            p for p in possible_probabilities if len(p) <= num_states
        ]

    states = []
    for i in range(num_states):
        states.append(StochasticMealyState(f'q{i}'))

    state_buffer = list(states)
    output_buffer = outputs.copy()
    for state in states:
        for i in inputs:
            prob = random.choice(possible_probabilities)
            reached_states = []
            transition_outputs = []
            for _ in prob:
                while True:
                    o = random.choice(
                        output_buffer) if output_buffer else random.choice(
                            outputs)
                    new_state = random.choice(
                        state_buffer) if state_buffer else random.choice(
                            states)

                    # ensure determinism
                    if o not in transition_outputs:
                        break

                    if output_buffer:
                        output_buffer.remove(o)
                    if state_buffer:
                        state_buffer.remove(new_state)

                reached_states.append(new_state)
                transition_outputs.append(o)

            for index in range(len(prob)):
                state.transitions[i].append(
                    (reached_states[index], transition_outputs[index],
                     prob[index]))

    return StochasticMealyMachine(states[0], states)