# Make sure that lambdas vector sums to 1.0 if not np.isclose(1.0, lambdas.sum()): err_msg = ('ERROR: lambdas vector does not sum to one.') raise RuntimeError(err_msg) J = lambdas.shape[0] beta_annual = 0.96 beta = beta_annual ** (80 / S) sigma = 2.5 l_tilde = 1.0 chi_n_vec = 1.0 * np.ones(S) start_age = 21 end_age = 100 mod_age_dist = (1 / S) * np.ones(S) dat_age_dist = ((1 / (end_age - start_age + 1)) * np.ones(end_age - start_age + 1)) emat = abil.get_e_interp(S, mod_age_dist, dat_age_dist, lambdas, plot=False) # Firm parameters A = 1.0 alpha = 0.35 delta_annual = 0.05 delta = 1 - ((1 - delta_annual) ** (80 / S)) # SS parameters SS_solve = True SS_tol = 1e-13 SS_graphs = True SS_EulDiff = True # TPI parameters T1 = int(round(3.0 * S)) T2 = int(round(3.5 * S)) TPI_solve = True TPI_tol = 1e-13
# chi_n_vec = np.hstack((np.linspace(1.2, 1.0, 10), # np.linspace(1.0, 1.0, 40), # np.linspace(1.0, 3.0, 30))) # b = 0.501 # upsilon = 1.553 ellip_init = np.array([0.2, 1.0]) Frisch = 0.8 scale_param = 1.0 cfe_params = np.array([Frisch, scale_param]) b, upsilon = elp.fit_ellip_CFE(ellip_init, cfe_params, l_tilde, True) lambdas = np.array([0.3, 0.3, 0.2, 0.1, 0.1]) J = lambdas.shape[0] age_wgts = np.ones(S) * (1 / S) age_wgts_80 = np.ones(80) * (1 / 80) emat = abil.get_e_interp(S, age_wgts, age_wgts_80, lambdas, True) # Firm parameters A = 1.0 alpha = 0.35 delta_annual = 0.05 delta = 1 - ((1 - delta_annual)**(80 / S)) # SS parameters SS_graph = True K_init = 100.0 L_init = 50.0 KL_init = np.array([K_init, L_init]) ss_args = (KL_init, beta, sigma, emat, chi_n_vec, l_tilde, b, upsilon, lambdas, S, J, alpha, A, delta)
demog.get_pop_objs(E, S, T1, T2, curr_year) imm_rates_mat = \ np.vstack((np.tile(np.reshape(imm_rates, (1, S)), (T1, 1)), np.tile(np.reshape(imm_rates_adj, (1, S)), (T2 + S - 1 - T1, 1)))) # Household utility and ability parameters lambdas = np.array([0.25, 0.25, 0.2, 0.1, 0.1, 0.09, 0.01]) # Make sure that lambdas vector sums to 1.0 if not np.isclose(1.0, lambdas.sum()): err_msg = ('ERROR: lambdas vector does not sum to one.') raise RuntimeError(err_msg) J = len(lambdas) emat = abil.get_e_interp(S, omega_path[0, :], omega_cur_80, lambdas, plot=False) zeta_mat = (np.tile(omega_SS.reshape((S, 1)), (1, J)) * np.tile(lambdas.reshape((1, J)), (S, 1))) beta_annual = 0.96 beta = beta_annual**(80 / S) sigma = 2.5 l_tilde = 1.0 chi_b_vec = 1.0 * np.ones(J) # Firm parameters Z = 1.0 gamma = 0.35 delta_annual = 0.05 delta = 1 - ((1 - delta_annual)**(80 / S))