Esempio n. 1
0
    def test_sample_constant_distribution(self):
        """Returns a constant sample distribution."""
        constant_dist = Distribution(dist_type="constant", constant=1)
        sample = constant_dist.sample(5)
        expected_sample = constant_dist.constant*ones(5)

        assert all(sample == expected_sample)
Esempio n. 2
0
    def test_sample_positive_constant_distribution(self):
        """Returns a constant positive sample distribution."""
        constant_dist = Distribution(dist_type="constant", constant=1)
        sample = constant_dist.sample_positive()
        expected = constant_dist.constant*ones(1)

        assert sample == expected
Esempio n. 3
0
    def test_sample_None_distribution(self):
        """Returns a None sample distribution."""
        None_dist = Distribution(dist_type=None)
        sample = None_dist.sample(size=10)
        expected_sample = full(10, None)

        assert all(sample == expected_sample)
Esempio n. 4
0
    def fixture_update_velocities(self) -> None:
        pytest.angle_variance = 0.1
        pytest.angle_variance_2 = 0.5
        pytest.angle_variance_field = 0.1
        large_sample = 500
        pytest.data_large_sample = {
            "vx": -20 * random.random(large_sample) + 10,
            "vy": -20 * random.random(large_sample) + 10
        }

        pytest.distrib = Distribution(dist_type="numpy",
                                      dist_name="normal",
                                      loc=10.0,
                                      scale=1.0)

        pytest.delta_angles = Distribution(
            dist_type="numpy",
            dist_name="normal",
            loc=0.0,
            scale=pytest.angle_variance).sample(size=large_sample)

        pytest.data_field = {
            "field": array(["field_2", "field_1"]),
            "vx": array([1.0, 2.0]),
            "vy": array([0, 2.0]),
        }
        pytest.delta_angles_2 = Distribution(
            dist_type="numpy",
            dist_name="normal",
            loc=0.0,
            scale=pytest.angle_variance_2).sample(large_sample)
Esempio n. 5
0
    def fixture_initialize_velocities(self):

        distribution = Distribution(dist_type="numpy",
                                    dist_name="gamma",
                                    shape=2)
        angle_dist = Distribution(dist_type="constant", constant=pi / 4)
        distribution_2 = Distribution(dist_type="constant", constant=1)
        angle_dist_2 = Distribution(dist_type="constant", constant=0)
        indexes = [0, 1, 2, 3, 4]
        return distribution, angle_dist, distribution_2, angle_dist_2, indexes
Esempio n. 6
0
    def test_sample_numpy_distribution(self):
        """Returns a numpy sample distribution."""
        numpy_dist = Distribution(
            dist_type="numpy",
            dist_name="beta",
            a=1, b=1
            )

        sample = numpy_dist.sample(5)
        expected = random.default_rng(seed=numpy_dist.seed).beta(1, 1, 5)

        assert all(sample == expected)
Esempio n. 7
0
 def test_empirical_distribution_SystemError_filename_does_not_exist(self):
     """
     Raises a SystemError creating an empirical type distribution with a
     wrong filename.
     """
     with pytest.raises(SystemError, match=pytest.error_message):
         Distribution(dist_type="empirical", filename=pytest.wrong_filename)
Esempio n. 8
0
    def test_empirical_distribution_using_file(
        self,
        fixture_empirical_distribution
    ):
        """
        Creates an empirical type distribution using the filename parameter and
        assigns the attributes: dist_type, seed and kd_estimator.
        """
        empirical_dist = Distribution(
            dist_type="empirical",
            data=None,
            filename=pytest.filename,
            kernel="gaussian",
            bandwidth=0.1
            )

        expected_kd_stimator = KernelDensity(
            kernel="gaussian",
            bandwidth=0.1
            ).fit(pytest.data_file.reshape(-1, 1)).sample(
                n_samples=10,
                random_state=0
                )

        kd_estimator = empirical_dist.kd_estimator.sample(
            n_samples=10,
            random_state=0
            )

        assert empirical_dist.dist_type == "empirical"
        assert empirical_dist.seed == int(time())
        assert empirical_dist.filename == pytest.filename
        assert all(kd_estimator == expected_kd_stimator)
Esempio n. 9
0
    def test_empirical_distribution_using_data(
        self,
        fixture_empirical_distribution
    ):
        """
        Creates an empirical type distribution using the data parameter and
        assigns the attributes: dist_type, seed and kd_estimator.
        """
        empirical_dist = Distribution(
            dist_type="empirical",
            data=pytest.data_1D,
            filename=None,
            kernel="gaussian",
            bandwidth=0.1
            )

        expected_kd_stimator = str(
            KernelDensity(
                kernel="gaussian",
                bandwidth=0.1
                ).fit(pytest.data_1D.reshape(-1, 1))
                )

        kd_estimator = str(empirical_dist.kd_estimator)

        assert empirical_dist.dist_type == "empirical"
        assert empirical_dist.seed == int(time())
        assert kd_estimator == expected_kd_stimator
Esempio n. 10
0
 def test_wrong_numpy_name(self, fixture_numpy_distribution):
     """
     Raises a SystemError creating a numpy distribution with a wrong
     dist_name.
     """
     with pytest.raises(SystemError, match=pytest.error_message):
         assert Distribution(dist_type="numpy", dist_name=pytest.wrong_name)
Esempio n. 11
0
 def fixture_set_velocities(self):
     distribution = Distribution(dist_type="constant", constant=5)
     delta_angles = Distribution(dist_type="numpy",
                                 dist_name="normal",
                                 loc=0.0,
                                 scale=0.1).sample(5)
     angles = [0, pi / 4, pi / 2, pi, 3 * pi / 4]
     pytest.vx = [
         5 * cos(angle + delta_angle)
         for (angle, delta_angle) in zip(angles, delta_angles)
     ]
     pytest.vy = [
         5 * sin(angle + delta_angle)
         for (angle, delta_angle) in zip(angles, delta_angles)
     ]
     return distribution, delta_angles
Esempio n. 12
0
    def test_sample_positivie_numpy(self):
        """Returns a numpy positive sample distribution."""
        numpy_dist = Distribution(
            dist_type="numpy",
            dist_name="normal",
            loc=-10, scale=0.2
            )

        sample = numpy_dist.sample_positive()
        expected = abs(
            random.default_rng(
                seed=numpy_dist.seed
                ).normal(-10, 0.2)
            )

        assert sample == expected
Esempio n. 13
0
    def test_sample_positive_weights_distribution_data(
        self,
        fixture_weights_distribution
    ):
        """Returns a weights sample distribution from a data array."""
        weights_dist = Distribution(
            dist_type="weights",
            data=pytest.data_2D
            )

        sample = weights_dist.sample_positive(5)
        expected_sample = abs(
            random.default_rng(int(time())).choice(
                a=pytest.data_2D[:, 0], p=pytest.data_2D[:, 1], size=5
                )
            )

        assert all(sample == expected_sample)
Esempio n. 14
0
    def test_None_distribution(self):
        """
        Creates a None type distribution and assigns the attributes: constant,
        dist_type and seed
        """
        None_dist = Distribution(dist_type=None)

        assert None_dist.constant == None
        assert None_dist.dist_type == None
        assert None_dist.seed == int(time())
Esempio n. 15
0
 def test_weights_distribution_SystemError_data_ndim_is_incorrect(
     self,
     fixture_weights_distribution
 ):
     """
     Raises a SystemError creating a weights type distribution with a
     wrong filename.
     """
     with pytest.raises(SystemError, match=pytest.error_message):
         assert Distribution(dist_type="weights", data=pytest.data_3D)
Esempio n. 16
0
 def test_constant_distribution_ValueError_no_constant(
     self,
     fixture_constant_distribution
 ):
     """
     Raises a SystemError creating a constant type distribution when no
     constant is passing to the constructor method.
     """
     with pytest.raises(SystemError, match=pytest.error_message):
         assert Distribution(dist_type="constant")
Esempio n. 17
0
 def test_empirical_distribution_SystemError_KernelDensity_estimator(
     self,
     fixture_empirical_distribution
 ):
     """Raises an error when a wrong KernelDensity estimator is passed."""
     with pytest.raises(SystemError, match=pytest.error_message):
         assert Distribution(
             dist_type="empirical",
             data=pytest.data_1D,
             kernel="Gaussian",
             bandwidth=0.1
             )
Esempio n. 18
0
    def test_constant_distribution(self, fixture_constant_distribution):
        """
        Creates a constant distribution and assigns the attributes: constant,
        dist_type and seed.
        """
        constant_dist = Distribution(
            dist_type="constant",
            constant=pytest.constant
            )

        assert constant_dist.constant == pytest.constant
        assert constant_dist.dist_type == "constant"
        assert constant_dist.seed == int(time())
Esempio n. 19
0
 def test_weights_distribution_SystemError_filename_does_not_exist(
     self,
     fixture_weights_distribution
 ):
     """
     Raises a SystemError creating a weights type distribution with a
     wrong filename.
     """
     with pytest.raises(SystemError, match=pytest.error_message):
         assert Distribution(
             dist_type="weights",
             filename=pytest.wrong_filename
             )
Esempio n. 20
0
    def test_sample_empirical_distribution_file(
        self,
        fixture_empirical_distribution
    ):
        """Returns an empirical sample distribution from a file."""
        empirical_dist = Distribution(
            dist_type="empirical",
            data=pytest.data_1D,
            kernel="gaussian",
            bandwidth=0.1
            )

        sample = empirical_dist.sample(5)

        expected_sample = KernelDensity(
            kernel="gaussian",
            bandwidth=0.1
            ).fit(pytest.data_1D.reshape(-1, 1)).sample(
                n_samples=5, random_state=int(time())
                ).flatten()

        assert all(sample == expected_sample)
Esempio n. 21
0
    def test_weights_distribution_filename(self, fixture_weights_distribution):
        """
        Creates a weights type distribution using the filename parameter
        and assigns the attributes: dist_type, seed, xi and pi.
        """
        weights_dist = Distribution(
            dist_type="weights",
            filename=pytest.filename
            )

        assert weights_dist.dist_type == "weights"
        assert weights_dist.seed == int(time())
        assert all(weights_dist.xi == pytest.data_file[:, 0])
        assert all(weights_dist.pi == pytest.data_file[:, 1])
Esempio n. 22
0
 def test_weights_distribution_ValueError_None_data_neither_file(
     self,
     fixture_weights_distribution
 ):
     """Raises an error when None data neither file is passed."""
     with pytest.raises(
         SystemError,
         match=pytest.error_message_None_file_neither_data
     ):
         assert Distribution(
             dist_type="weights",
             data=None,
             filename=None,
             )
Esempio n. 23
0
 def test_empirical_distribution_SystemError_data_ndim_is_incorrect(
     self,
     fixture_empirical_distribution
 ):
     """
     Raises a SystemError creating an empirical type distribution when
     data is not a 1-D array.
     """
     with pytest.raises(SystemError, match=pytest.error_message):
         assert Distribution(
                     dist_type="empirical",
                     data=pytest.data_3D,
                     filename=None,
                     kernel="gaussian",
                     bandwidth=0.1
                     )
Esempio n. 24
0
    def test_numpy_distribution(self, fixture_numpy_distribution):
        """
        Creates a numpy distribution and assigns the attribute
        numpy_distribution.
        """
        numpy_dist = Distribution(
            dist_type="numpy",
            dist_name=pytest.dist_name
            )

        name = numpy_dist.numpy_distribution.__name__
        gen = numpy_dist.random_number_generator
        expected_gen = random.default_rng(seed=int(time()))

        assert numpy_dist.dist_type == "numpy"
        assert numpy_dist.seed == int(time())
        assert all(gen.random(size=3) == expected_gen.random(size=3))
        assert name == pytest.dist_name
Esempio n. 25
0
 def test_wrong_type(self):
     """Raises a SystemErrorError when wrong type distribution is passed."""
     with pytest.raises(SystemError, ):
         assert Distribution(dist_type="NumPyy")