Esempio n. 1
0
def main(unused_argv):
  absl.flags.FLAGS.alsologtostderr = True
  # Set hyperparams from json args and defaults
  flags = lib_flags.Flags()
  # Config hparams
  if FLAGS.config:
    config_module = importlib.import_module(
        'magenta.models.gansynth.configs.{}'.format(FLAGS.config))
    flags.load(config_module.hparams)
  # Command line hparams
  flags.load_json(FLAGS.hparams)
  # Set default flags
  lib_model.set_flags(flags)

  print('Flags:')
  flags.print_values()

  # Create training directory
  flags['train_root_dir'] = util.expand_path(flags['train_root_dir'])
  if not tf.gfile.Exists(flags['train_root_dir']):
    tf.gfile.MakeDirs(flags['train_root_dir'])

  # Save the flags to help with loading the model latter
  fname = os.path.join(flags['train_root_dir'], 'experiment.json')
  with tf.gfile.Open(fname, 'w') as f:
    json.dump(flags, f)  # pytype: disable=wrong-arg-types

  # Run training
  run(flags)
Esempio n. 2
0
def main(unused_argv):
  absl.flags.FLAGS.alsologtostderr = True
  # Set hyperparams from json args and defaults
  flags = lib_flags.Flags()
  # Config hparams
  if FLAGS.config:
    config_module = importlib.import_module(
        'magenta.models.gansynth.configs.{}'.format(FLAGS.config))
    flags.load(config_module.hparams)
  # Command line hparams
  flags.load_json(FLAGS.hparams)
  # Set default flags
  lib_model.set_flags(flags)

  print('Flags:')
  flags.print_values()

  # Create training directory
  flags['train_root_dir'] = util.expand_path(flags['train_root_dir'])
  if not tf.gfile.Exists(flags['train_root_dir']):
    tf.gfile.MakeDirs(flags['train_root_dir'])

  # Save the flags to help with loading the model latter
  fname = os.path.join(flags['train_root_dir'], 'experiment.json')
  with tf.gfile.Open(fname, 'w') as f:
    json.dump(flags, f)

  # Run training
  run(flags)