Esempio n. 1
0
def solve_marathos_problem_with_setting(setting):

    globalization = setting['globalization']
    line_search_use_sufficient_descent = setting[
        'line_search_use_sufficient_descent']
    globalization_use_SOC = setting['globalization_use_SOC']

    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # set model
    model = AcadosModel()
    x1 = SX.sym('x1')
    x2 = SX.sym('x2')
    x = vertcat(x1, x2)

    # dynamics: identity
    model.disc_dyn_expr = x
    model.x = x
    model.u = SX.sym('u', 0, 0)  # [] / None doesnt work
    model.p = []
    model.name = f'marathos_problem'
    ocp.model = model

    # discretization
    Tf = 1
    N = 1
    ocp.dims.N = N
    ocp.solver_options.tf = Tf

    # cost
    ocp.cost.cost_type_e = 'EXTERNAL'
    ocp.model.cost_expr_ext_cost_e = x1

    # constarints
    ocp.model.con_h_expr = x1**2 + x2**2
    ocp.constraints.lh = np.array([1.0])
    ocp.constraints.uh = np.array([1.0])
    # # soften
    # ocp.constraints.idxsh = np.array([0])
    # ocp.cost.zl = 1e5 * np.array([1])
    # ocp.cost.zu = 1e5 * np.array([1])
    # ocp.cost.Zl = 1e5 * np.array([1])
    # ocp.cost.Zu = 1e5 * np.array([1])

    # add bounds on x
    # nx = 2
    # ocp.constraints.idxbx_0 = np.array(range(nx))
    # ocp.constraints.lbx_0 = -2 * np.ones((nx))
    # ocp.constraints.ubx_0 = 2 * np.ones((nx))

    # set options
    ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'  # FULL_CONDENSING_QPOASES
    # PARTIAL_CONDENSING_HPIPM, FULL_CONDENSING_QPOASES, FULL_CONDENSING_HPIPM,
    # PARTIAL_CONDENSING_QPDUNES, PARTIAL_CONDENSING_OSQP
    ocp.solver_options.hessian_approx = 'EXACT'
    ocp.solver_options.integrator_type = 'DISCRETE'
    # ocp.solver_options.print_level = 1
    ocp.solver_options.tol = TOL
    ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP
    ocp.solver_options.globalization = globalization
    ocp.solver_options.alpha_min = 1e-2
    # ocp.solver_options.__initialize_t_slacks = 0
    # ocp.solver_options.regularize_method = 'CONVEXIFY'
    ocp.solver_options.levenberg_marquardt = 1e-1
    # ocp.solver_options.print_level = 2
    SQP_max_iter = 300
    ocp.solver_options.qp_solver_iter_max = 400
    ocp.solver_options.regularize_method = 'MIRROR'
    # ocp.solver_options.exact_hess_constr = 0
    ocp.solver_options.line_search_use_sufficient_descent = line_search_use_sufficient_descent
    ocp.solver_options.globalization_use_SOC = globalization_use_SOC
    ocp.solver_options.eps_sufficient_descent = 1e-1
    ocp.solver_options.qp_tol = 5e-7

    if FOR_LOOPING:  # call solver in for loop to get all iterates
        ocp.solver_options.nlp_solver_max_iter = 1
        ocp_solver = AcadosOcpSolver(ocp, json_file=f'{model.name}.json')
    else:
        ocp.solver_options.nlp_solver_max_iter = SQP_max_iter
        ocp_solver = AcadosOcpSolver(ocp, json_file=f'{model.name}.json')

    # initialize solver
    rad_init = 0.1  #0.1 #np.pi / 4
    xinit = np.array([np.cos(rad_init), np.sin(rad_init)])
    # xinit = np.array([0.82120912, 0.58406911])
    [ocp_solver.set(i, "x", xinit) for i in range(N + 1)]

    # solve
    if FOR_LOOPING:  # call solver in for loop to get all iterates
        iterates = np.zeros((SQP_max_iter + 1, 2))
        iterates[0, :] = xinit
        alphas = np.zeros((SQP_max_iter, ))
        qp_iters = np.zeros((SQP_max_iter, ))
        iter = SQP_max_iter
        residuals = np.zeros((4, SQP_max_iter))

        # solve
        for i in range(SQP_max_iter):
            status = ocp_solver.solve()
            ocp_solver.print_statistics(
            )  # encapsulates: stat = ocp_solver.get_stats("statistics")
            # print(f'acados returned status {status}.')
            iterates[i + 1, :] = ocp_solver.get(0, "x")
            if status in [0, 4]:
                iter = i
                break
            alphas[i] = ocp_solver.get_stats('alpha')[1]
            qp_iters[i] = ocp_solver.get_stats('qp_iter')[1]
            residuals[:, i] = ocp_solver.get_stats('residuals')

    else:
        ocp_solver.solve()
        ocp_solver.print_statistics()
        iter = ocp_solver.get_stats('sqp_iter')[0]
        alphas = ocp_solver.get_stats('alpha')[1:]
        qp_iters = ocp_solver.get_stats('qp_iter')
        residuals = ocp_solver.get_stats('statistics')[1:5, 1:iter]

    # get solution
    solution = ocp_solver.get(0, "x")

    # print summary
    print(f"solved Marathos test problem with settings {setting}")
    print(
        f"cost function value = {ocp_solver.get_cost()} after {iter} SQP iterations"
    )
    print(f"alphas: {alphas[:iter]}")
    print(f"total number of QP iterations: {sum(qp_iters[:iter])}")
    max_infeasibility = np.max(residuals[1:3])
    print(f"max infeasibility: {max_infeasibility}")

    # compare to analytical solution
    exact_solution = np.array([-1, 0])
    sol_err = max(np.abs(solution - exact_solution))

    # checks
    if sol_err > TOL * 1e1:
        raise Exception(
            f"error of numerical solution wrt exact solution = {sol_err} > tol = {TOL*1e1}"
        )
    else:
        print(f"matched analytical solution with tolerance {TOL}")

    try:
        if globalization == 'FIXED_STEP':
            # import pdb; pdb.set_trace()
            if max_infeasibility < 5.0:
                raise Exception(
                    f"Expected max_infeasibility > 5.0 when using full step SQP on Marathos problem"
                )
            if iter != 10:
                raise Exception(
                    f"Expected 10 SQP iterations when using full step SQP on Marathos problem, got {iter}"
                )
            if any(alphas[:iter] != 1.0):
                raise Exception(
                    f"Expected all alphas = 1.0 when using full step SQP on Marathos problem"
                )
        elif globalization == 'MERIT_BACKTRACKING':
            if max_infeasibility > 0.5:
                raise Exception(
                    f"Expected max_infeasibility < 0.5 when using globalized SQP on Marathos problem"
                )
            if globalization_use_SOC == 0:
                if FOR_LOOPING and iter != 57:
                    raise Exception(
                        f"Expected 57 SQP iterations when using globalized SQP without SOC on Marathos problem, got {iter}"
                    )
            elif line_search_use_sufficient_descent == 1:
                if iter not in range(29, 37):
                    # NOTE: got 29 locally and 36 on Github actions.
                    # On Github actions the inequality constraint was numerically violated in the beginning.
                    # This leads to very different behavior, since the merit gradient is so different.
                    # Github actions:  merit_grad = -1.669330e+00, merit_grad_cost = -1.737950e-01, merit_grad_dyn = 0.000000e+00, merit_grad_ineq = -1.495535e+00
                    # Jonathan Laptop: merit_grad = -1.737950e-01, merit_grad_cost = -1.737950e-01, merit_grad_dyn = 0.000000e+00, merit_grad_ineq = 0.000000e+00
                    raise Exception(
                        f"Expected SQP iterations in range(29, 37) when using globalized SQP with SOC on Marathos problem, got {iter}"
                    )
            else:
                if iter != 12:
                    raise Exception(
                        f"Expected 12 SQP iterations when using globalized SQP with SOC on Marathos problem, got {iter}"
                    )
    except Exception as inst:
        if FOR_LOOPING and globalization == "MERIT_BACKTRACKING":
            print(
                "\nAcados globalized OCP solver behaves different when for looping due to different merit function weights.",
                "Following exception is not raised\n")
            print(inst, "\n")
        else:
            raise (inst)

    if PLOT:
        plt.figure()
        axs = plt.plot(solution[0], solution[1], 'x', label='solution')

        if FOR_LOOPING:  # call solver in for loop to get all iterates
            cm = plt.cm.get_cmap('RdYlBu')
            axs = plt.scatter(iterates[:iter + 1, 0],
                              iterates[:iter + 1, 1],
                              c=range(iter + 1),
                              s=35,
                              cmap=cm,
                              label='iterates')
            plt.colorbar(axs)

        ts = np.linspace(0, 2 * np.pi, 100)
        plt.plot(1 * np.cos(ts) + 0, 1 * np.sin(ts) - 0, 'r')
        plt.axis('square')
        plt.legend()
        plt.title(
            f"Marathos problem with N = {N}, x formulation, SOC {globalization_use_SOC}"
        )
        plt.show()

    print(f"\n\n----------------------\n")
simX[N, :] = ocp_solver.get(N, "x")

print("inequality multipliers at stage 1")
print(ocp_solver.get(1, "lam"))  # inequality multipliers at stage 1
print("slack values at stage 1")
print(ocp_solver.get(1, "t"))  # slack values at stage 1
print("multipliers of dynamic conditions between stage 1 and 2")
print(ocp_solver.get(
    1, "pi"))  # multipliers of dynamic conditions between stage 1 and 2

# initialize ineq multipliers and slacks at stage 1
ocp_solver.set(1, "lam", np.zeros(2, ))
ocp_solver.set(1, "t", np.zeros(2, ))

ocp_solver.print_statistics(
)  # encapsulates: stat = ocp_solver.get_stats("statistics")

# timings
time_tot = ocp_solver.get_stats("time_tot")
time_lin = ocp_solver.get_stats("time_lin")
time_sim = ocp_solver.get_stats("time_sim")
time_qp = ocp_solver.get_stats("time_qp")

print(
    f"timings OCP solver: total: {1e3*time_tot}ms, lin: {1e3*time_lin}ms, sim: {1e3*time_sim}ms, qp: {1e3*time_qp}ms"
)
# print("simU", simU)
# print("simX", simX)

plot_pendulum(shooting_nodes, Fmax, simU, simX, latexify=False)
Esempio n. 3
0
def solve_marathos_ocp(setting):

    globalization = setting['globalization']
    line_search_use_sufficient_descent = setting[
        'line_search_use_sufficient_descent']
    globalization_use_SOC = setting['globalization_use_SOC']
    qp_solver = setting['qp_solver']

    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # set model
    model = export_linear_mass_model()
    ocp.model = model

    nx = model.x.size()[0]
    nu = model.u.size()[0]
    ny = nu

    # discretization
    Tf = 2
    N = 20
    shooting_nodes = np.linspace(0, Tf, N + 1)
    ocp.dims.N = N

    # set cost
    Q = 2 * np.diag([])
    R = 2 * np.diag([1e1, 1e1])

    ocp.cost.W_e = Q
    ocp.cost.W = scipy.linalg.block_diag(Q, R)

    ocp.cost.cost_type = 'LINEAR_LS'
    ocp.cost.cost_type_e = 'LINEAR_LS'

    ocp.cost.Vx = np.zeros((ny, nx))

    Vu = np.eye((nu))
    ocp.cost.Vu = Vu
    ocp.cost.yref = np.zeros((ny, ))

    # set constraints
    Fmax = 5
    ocp.constraints.lbu = -Fmax * np.ones((nu, ))
    ocp.constraints.ubu = +Fmax * np.ones((nu, ))
    ocp.constraints.idxbu = np.array(range(nu))
    x0 = np.array([1e-1, 1.1, 0, 0])
    ocp.constraints.x0 = x0

    # terminal constraint
    x_goal = np.array([0, -1.1, 0, 0])
    ocp.constraints.idxbx_e = np.array(range(nx))
    ocp.constraints.lbx_e = x_goal
    ocp.constraints.ubx_e = x_goal

    if SOFTEN_TERMINAL:
        ocp.constraints.idxsbx_e = np.array(range(nx))
        ocp.cost.zl_e = 1e4 * np.ones(nx)
        ocp.cost.zu_e = 1e4 * np.ones(nx)
        ocp.cost.Zl_e = 1e6 * np.ones(nx)
        ocp.cost.Zu_e = 1e6 * np.ones(nx)

    # add obstacle
    if OBSTACLE:
        obs_rad = 1.0
        obs_x = 0.0
        obs_y = 0.0
        circle = (obs_x, obs_y, obs_rad)
        ocp.constraints.uh = np.array([100.0])  # doenst matter
        ocp.constraints.lh = np.array([obs_rad**2])
        x_square = model.x[0]**OBSTACLE_POWER + model.x[1]**OBSTACLE_POWER
        ocp.model.con_h_expr = x_square
        # copy for terminal
        ocp.constraints.uh_e = ocp.constraints.uh
        ocp.constraints.lh_e = ocp.constraints.lh
        ocp.model.con_h_expr_e = ocp.model.con_h_expr
    else:
        circle = None

    # soften
    if OBSTACLE and SOFTEN_OBSTACLE:
        ocp.constraints.idxsh = np.array([0])
        ocp.constraints.idxsh_e = np.array([0])
        Zh = 1e6 * np.ones(1)
        zh = 1e4 * np.ones(1)
        ocp.cost.zl = zh
        ocp.cost.zu = zh
        ocp.cost.Zl = Zh
        ocp.cost.Zu = Zh
        ocp.cost.zl_e = np.concatenate((ocp.cost.zl_e, zh))
        ocp.cost.zu_e = np.concatenate((ocp.cost.zu_e, zh))
        ocp.cost.Zl_e = np.concatenate((ocp.cost.Zl_e, Zh))
        ocp.cost.Zu_e = np.concatenate((ocp.cost.Zu_e, Zh))

    # set options
    ocp.solver_options.qp_solver = qp_solver  # FULL_CONDENSING_QPOASES
    # PARTIAL_CONDENSING_HPIPM, FULL_CONDENSING_QPOASES, FULL_CONDENSING_HPIPM,
    # PARTIAL_CONDENSING_QPDUNES, PARTIAL_CONDENSING_OSQP
    ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
    ocp.solver_options.integrator_type = 'ERK'
    # ocp.solver_options.print_level = 1
    ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP
    ocp.solver_options.globalization = globalization
    ocp.solver_options.alpha_min = 0.01
    # ocp.solver_options.__initialize_t_slacks = 0
    # ocp.solver_options.levenberg_marquardt = 1e-2
    ocp.solver_options.qp_solver_cond_N = 0
    ocp.solver_options.print_level = 1
    ocp.solver_options.nlp_solver_max_iter = 200
    ocp.solver_options.qp_solver_iter_max = 400
    # NOTE: this is needed for PARTIAL_CONDENSING_HPIPM to get expected behavior
    qp_tol = 5e-7
    ocp.solver_options.qp_solver_tol_stat = qp_tol
    ocp.solver_options.qp_solver_tol_eq = qp_tol
    ocp.solver_options.qp_solver_tol_ineq = qp_tol
    ocp.solver_options.qp_solver_tol_comp = qp_tol
    ocp.solver_options.qp_solver_ric_alg = 1
    # ocp.solver_options.qp_solver_cond_ric_alg = 1

    # set prediction horizon
    ocp.solver_options.tf = Tf

    ocp_solver = AcadosOcpSolver(ocp, json_file=f'{model.name}_ocp.json')
    ocp_solver.options_set('line_search_use_sufficient_descent',
                           line_search_use_sufficient_descent)
    ocp_solver.options_set('globalization_use_SOC', globalization_use_SOC)
    ocp_solver.options_set('full_step_dual', 1)

    if INITIALIZE:  # initialize solver
        # [ocp_solver.set(i, "x", x0 + (i/N) * (x_goal-x0)) for i in range(N+1)]
        [ocp_solver.set(i, "x", x0) for i in range(N + 1)]
        # [ocp_solver.set(i, "u", 2*(np.random.rand(2) - 0.5)) for i in range(N)]

    # solve
    status = ocp_solver.solve()
    ocp_solver.print_statistics(
    )  # encapsulates: stat = ocp_solver.get_stats("statistics")
    sqp_iter = ocp_solver.get_stats('sqp_iter')[0]
    print(f'acados returned status {status}.')

    # ocp_solver.store_iterate(f'it{ocp.solver_options.nlp_solver_max_iter}_{model.name}.json')

    # get solution
    simX = np.array([ocp_solver.get(i, "x") for i in range(N + 1)])
    simU = np.array([ocp_solver.get(i, "u") for i in range(N)])
    pi_multiplier = [ocp_solver.get(i, "pi") for i in range(N)]
    print(f"cost function value = {ocp_solver.get_cost()}")

    # print summary
    print(f"solved Marathos test problem with settings {setting}")
    print(
        f"cost function value = {ocp_solver.get_cost()} after {sqp_iter} SQP iterations"
    )
    # print(f"alphas: {alphas[:iter]}")
    # print(f"total number of QP iterations: {sum(qp_iters[:iter])}")
    # max_infeasibility = np.max(residuals[1:3])
    # print(f"max infeasibility: {max_infeasibility}")

    # checks
    if status != 0:
        raise Exception(f"acados solver returned status {status} != 0.")
    if globalization == "FIXED_STEP":
        if sqp_iter != 18:
            raise Exception(
                f"acados solver took {sqp_iter} iterations, expected 18.")
    elif globalization == "MERIT_BACKTRACKING":
        if globalization_use_SOC == 1 and line_search_use_sufficient_descent == 0 and sqp_iter not in range(
                21, 23):
            raise Exception(
                f"acados solver took {sqp_iter} iterations, expected range(21, 23)."
            )
        elif globalization_use_SOC == 1 and line_search_use_sufficient_descent == 1 and sqp_iter not in range(
                21, 24):
            raise Exception(
                f"acados solver took {sqp_iter} iterations, expected range(21, 24)."
            )
        elif globalization_use_SOC == 0 and line_search_use_sufficient_descent == 0 and sqp_iter not in range(
                155, 165):
            raise Exception(
                f"acados solver took {sqp_iter} iterations, expected range(155, 165)."
            )
        elif globalization_use_SOC == 0 and line_search_use_sufficient_descent == 1 and sqp_iter not in range(
                160, 175):
            raise Exception(
                f"acados solver took {sqp_iter} iterations, expected range(160, 175)."
            )

    if PLOT:
        plot_linear_mass_system_X_state_space(simX,
                                              circle=circle,
                                              x_goal=x_goal)
        plot_linear_mass_system_U(shooting_nodes, simU)
        # plot_linear_mass_system_X(shooting_nodes, simX)

    # import pdb; pdb.set_trace()
    print(f"\n\n----------------------\n")
Esempio n. 4
0
def main(discretization='shooting_nodes'):
    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # set model
    model = export_pendulum_ode_model()
    ocp.model = model

    integrator_type = 'LIFTED_IRK'  # ERK, IRK, GNSF, LIFTED_IRK

    if integrator_type == 'GNSF':
        acados_dae_model_json_dump(model)
        # structure detection in Matlab/Octave -> produces 'pendulum_ode_gnsf_functions.json'
        status = os.system('octave detect_gnsf_from_json.m')
        # load gnsf from json
        with open(model.name + '_gnsf_functions.json', 'r') as f:
            gnsf_dict = json.load(f)
        ocp.gnsf_model = gnsf_dict

    Tf = 1.0
    nx = model.x.size()[0]
    nu = model.u.size()[0]
    ny = nx + nu
    ny_e = nx
    N = 15

    # discretization
    ocp.dims.N = N
    # shooting_nodes = np.linspace(0, Tf, N+1)

    time_steps = np.linspace(0, 1, N)
    time_steps = Tf * time_steps / sum(time_steps)

    shooting_nodes = np.zeros((N + 1, ))
    for i in range(len(time_steps)):
        shooting_nodes[i + 1] = shooting_nodes[i] + time_steps[i]

    # nonuniform discretizations can be defined either by shooting_nodes or time_steps:
    if discretization == 'shooting_nodes':
        ocp.solver_options.shooting_nodes = shooting_nodes
    elif discretization == 'time_steps':
        ocp.solver_options.time_steps = time_steps
    else:
        raise NotImplementedError(
            f"discretization type {discretization} not supported.")

    # set num_steps
    ocp.solver_options.sim_method_num_steps = 2 * np.ones((N, ))
    ocp.solver_options.sim_method_num_steps[0] = 3

    # set num_stages
    ocp.solver_options.sim_method_num_stages = 2 * np.ones((N, ))
    ocp.solver_options.sim_method_num_stages[0] = 4

    # set cost
    Q = 2 * np.diag([1e3, 1e3, 1e-2, 1e-2])
    R = 2 * np.diag([1e-2])

    ocp.cost.W_e = Q
    ocp.cost.W = scipy.linalg.block_diag(Q, R)

    ocp.cost.cost_type = 'LINEAR_LS'
    ocp.cost.cost_type_e = 'LINEAR_LS'

    ocp.cost.Vx = np.zeros((ny, nx))
    ocp.cost.Vx[:nx, :nx] = np.eye(nx)

    Vu = np.zeros((ny, nu))
    Vu[4, 0] = 1.0
    ocp.cost.Vu = Vu

    ocp.cost.Vx_e = np.eye(nx)

    ocp.cost.yref = np.zeros((ny, ))
    ocp.cost.yref_e = np.zeros((ny_e, ))

    # set constraints
    Fmax = 80
    ocp.constraints.lbu = np.array([-Fmax])
    ocp.constraints.ubu = np.array([+Fmax])

    x0 = np.array([0.0, np.pi, 0.0, 0.0])
    ocp.constraints.x0 = x0
    ocp.constraints.idxbu = np.array([0])

    ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'  # FULL_CONDENSING_QPOASES
    ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
    ocp.solver_options.integrator_type = integrator_type
    ocp.solver_options.print_level = 0
    ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP

    # set prediction horizon
    ocp.solver_options.tf = Tf
    ocp.solver_options.initialize_t_slacks = 1

    # Set additional options for Simulink interface:
    acados_path = get_acados_path()
    json_path = os.path.join(acados_path,
                             'interfaces/acados_template/acados_template')
    with open(json_path + '/simulink_default_opts.json', 'r') as f:
        simulink_opts = json.load(f)
    ocp_solver = AcadosOcpSolver(ocp,
                                 json_file='acados_ocp.json',
                                 simulink_opts=simulink_opts)

    # ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp.json')

    simX = np.ndarray((N + 1, nx))
    simU = np.ndarray((N, nu))

    # change options after creating ocp_solver
    ocp_solver.options_set("step_length", 0.99999)
    ocp_solver.options_set("globalization",
                           "fixed_step")  # fixed_step, merit_backtracking
    ocp_solver.options_set("tol_eq", TOL)
    ocp_solver.options_set("tol_stat", TOL)
    ocp_solver.options_set("tol_ineq", TOL)
    ocp_solver.options_set("tol_comp", TOL)

    # initialize solver
    for i in range(N):
        ocp_solver.set(i, "x", x0)
    status = ocp_solver.solve()

    if status not in [0, 2]:
        raise Exception('acados returned status {}. Exiting.'.format(status))

    # get primal solution
    for i in range(N):
        simX[i, :] = ocp_solver.get(i, "x")
        simU[i, :] = ocp_solver.get(i, "u")
    simX[N, :] = ocp_solver.get(N, "x")

    print("inequality multipliers at stage 1")
    print(ocp_solver.get(1, "lam"))  # inequality multipliers at stage 1
    print("slack values at stage 1")
    print(ocp_solver.get(1, "t"))  # slack values at stage 1
    print("multipliers of dynamic conditions between stage 1 and 2")
    print(ocp_solver.get(
        1, "pi"))  # multipliers of dynamic conditions between stage 1 and 2

    # initialize ineq multipliers and slacks at stage 1
    ocp_solver.set(1, "lam", np.zeros(2, ))
    ocp_solver.set(1, "t", np.zeros(2, ))

    ocp_solver.print_statistics(
    )  # encapsulates: stat = ocp_solver.get_stats("statistics")

    # timings
    time_tot = ocp_solver.get_stats("time_tot")
    time_lin = ocp_solver.get_stats("time_lin")
    time_sim = ocp_solver.get_stats("time_sim")
    time_qp = ocp_solver.get_stats("time_qp")

    print(
        f"timings OCP solver: total: {1e3*time_tot}ms, lin: {1e3*time_lin}ms, sim: {1e3*time_sim}ms, qp: {1e3*time_qp}ms"
    )
    # print("simU", simU)
    # print("simX", simX)
    iterate_filename = f'final_iterate_{discretization}.json'
    ocp_solver.store_iterate(filename=iterate_filename, overwrite=True)

    plot_pendulum(shooting_nodes, Fmax, simU, simX, latexify=False)
    del ocp_solver
Esempio n. 5
0
def solve_armijo_problem_with_setting(setting):
    globalization = setting['globalization']
    line_search_use_sufficient_descent = setting[
        'line_search_use_sufficient_descent']
    globalization_use_SOC = setting['globalization_use_SOC']

    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # set model
    model = AcadosModel()
    x = SX.sym('x')

    # dynamics: identity
    model.disc_dyn_expr = x
    model.x = x
    model.u = SX.sym('u', 0, 0)  # [] / None doesnt work
    model.p = []
    model.name = f'armijo_problem'
    ocp.model = model

    # discretization
    Tf = 1
    N = 1
    ocp.dims.N = N
    ocp.solver_options.tf = Tf

    # cost
    ocp.cost.cost_type_e = 'EXTERNAL'
    ocp.model.cost_expr_ext_cost_e = x @ x
    ocp.model.cost_expr_ext_cost_custom_hess_e = 1.0  # 2.0 is the actual hessian

    # constarints
    ocp.constraints.idxbx = np.array([0])
    ocp.constraints.lbx = np.array([-10.0])
    ocp.constraints.ubx = np.array([10.0])

    # options
    ocp.solver_options.qp_solver = 'FULL_CONDENSING_QPOASES'  # 'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES
    ocp.solver_options.hessian_approx = 'EXACT'
    ocp.solver_options.integrator_type = 'DISCRETE'
    ocp.solver_options.print_level = 0
    ocp.solver_options.tol = TOL
    ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP
    ocp.solver_options.globalization = globalization
    ocp.solver_options.alpha_reduction = 0.9
    ocp.solver_options.line_search_use_sufficient_descent = line_search_use_sufficient_descent
    ocp.solver_options.globalization_use_SOC = globalization_use_SOC
    ocp.solver_options.eps_sufficient_descent = 5e-1
    SQP_max_iter = 200
    ocp.solver_options.qp_solver_iter_max = 400
    ocp.solver_options.nlp_solver_max_iter = SQP_max_iter

    # create solver
    ocp_solver = AcadosOcpSolver(ocp, json_file=f'{model.name}.json')

    # initialize solver
    xinit = np.array([1.0])
    [ocp_solver.set(i, "x", xinit) for i in range(N + 1)]

    # get stats
    status = ocp_solver.solve()
    ocp_solver.print_statistics()
    iter = ocp_solver.get_stats('sqp_iter')[0]
    alphas = ocp_solver.get_stats('alpha')[1:]
    qp_iters = ocp_solver.get_stats('qp_iter')
    print(f"acados ocp solver returned status {status}")

    # get solution
    solution = ocp_solver.get(0, "x")
    print(f"found solution {solution}")

    # print summary
    print(f"solved Armijo test problem with settings {setting}")
    print(
        f"cost function value = {ocp_solver.get_cost()} after {iter} SQP iterations"
    )
    print(f"alphas: {alphas[:iter]}")
    print(f"total number of QP iterations: {sum(qp_iters[:iter])}")

    # compare to analytical solution
    exact_solution = np.array([0.0])
    sol_err = max(np.abs(solution - exact_solution))
    print(f"error wrt analytical solution {sol_err}")

    # checks
    if ocp.model.cost_expr_ext_cost_custom_hess_e == 1.0:
        if globalization == 'MERIT_BACKTRACKING':
            if sol_err > TOL * 1e1:
                raise Exception(
                    f"error of numerical solution wrt exact solution = {sol_err} > tol = {TOL*1e1}"
                )
            else:
                print(f"matched analytical solution with tolerance {TOL}")
            if status != 0:
                raise Exception(
                    f"acados solver returned status {status} != 0.")

            if line_search_use_sufficient_descent == 1:
                if iter > 22:
                    raise Exception(f"acados ocp solver took {iter} iterations." + \
                        "Expected <= 22 iterations for globalized SQP method with aggressive eps_sufficient_descent condition on Armijo test problem.")
            else:
                if iter < 64:
                    raise Exception(f"acados ocp solver took {iter} iterations." + \
                        "Expected > 64 iterations for globalized SQP method without sufficient descent condition on Armijo test problem.")

        elif globalization == 'FIXED_STEP':
            if status != 2:
                raise Exception(
                    f"acados solver returned status {status} != 2. Expected maximum iterations for full-step SQP on Armijo test problem."
                )
            else:
                print(
                    f"Sucess: Expected maximum iterations for full-step SQP on Armijo test problem."
                )

    print(f"\n\n----------------------\n")
Esempio n. 6
0
class Pmpc(object):
    def __init__(self,
                 N,
                 sys,
                 cost,
                 wref=None,
                 tuning=None,
                 lam_g_ref=None,
                 sensitivities=None,
                 options={}):
        """ Constructor
        """

        # store construction data
        self.__N = N
        self.__vars = sys['vars']
        self.__nx = sys['vars']['x'].shape[0]
        self.__nu = sys['vars']['u'].shape[0]

        # nonlinear inequalities slacks
        if 'us' in sys['vars']:
            self.__ns = sys['vars']['us'].shape[0]
        else:
            self.__ns = 0

        # mpc slacks
        if 'usc' in sys['vars']:
            self.__nsc = sys['vars']['usc'].shape[0]
            self.__scost = sys['scost']
        else:
            self.__nsc = 0

        # store system dynamics
        self.__F = sys['f']

        # store path constraints
        if 'h' in sys:
            self.__h = sys['h']
            h_lin = self.__h(*self.__vars.values())
            self.__h_x_idx = [
                idx for idx in range(h_lin.shape[0])
                if not True in ca.which_depends(
                    h_lin[idx], ct.vertcat(*list(self.__vars.values())[1:]))
            ]
        else:
            self.__h = None

        # store slacked nonlinear inequality constraints
        if 'g' in sys:
            self.__gnl = sys['g']
            self.__detect_state_dependent_constraints()

        else:
            self.__gnl = None
            self.__h_us_idx = []  # no nonlinear state-dependent constraints

        # store system sensitivities around steady state
        self.__S = sys['S']

        self.__cost = cost

        # set options
        self.__options = self.__default_options()
        for option in options:
            if option in self.__options:
                self.__options[option] = options[option]
            else:
                raise ValueError(
                    'Unknown option for Pmpc class instance: "{}"'.format(
                        option))

        # detect cost-type
        if self.__cost.n_in() == 2:

            # cost function of the form: l(x,u)
            self.__type = 'economic'

            # no tuning required
            tuning = None

            if self.__options['hessian_approximation'] == 'gauss_newton':
                self.__options['hessian_approximation'] = 'exact'
                Logger.logger.warning(
                    'Gauss-Newton Hessian approximation cannot be applied for economic MPC problem. Switched to exact Hessian.'
                )

        else:

            # cost function of the form: (w-wref)'*H*(w-wref) + q'w
            self.__type = 'tracking'

            # check if tuning matrices are provided
            assert tuning != None, 'Provide tuning matrices for tracking MPC!'

        # periodicity operator
        self.__p_operator = self.__options['p_operator']
        self.__jac_p_operator = ca.Function('jac_p', [sys['vars']['x']], [
            ca.jacobian(self.__p_operator(sys['vars']['x']), sys['vars']['x'])
        ])
        self.__S = sensitivities

        # construct MPC solver
        self.__construct_solver()

        # periodic indexing
        self.__index = 0
        self.__index_acados = 0

        # create periodic reference
        assert wref != None, 'Provide reference trajectory!'
        self.__create_reference(wref, tuning, lam_g_ref)

        # initialize log
        self.__initialize_log()

        # initialize acados solvers
        self.__acados_ocp_solver = None
        self.__acados_integrator = None

        # solver initial guess
        self.__set_initial_guess()

        return None

    def __default_options(self):

        # default options
        opts = {
            'hessian_approximation':
            'exact',
            'ipopt_presolve':
            False,
            'max_iter':
            2000,
            'p_operator':
            ca.Function('p_operator', [self.__vars['x']], [self.__vars['x']]),
            'slack_flag':
            'none'
        }

        return opts

    def __construct_solver(self):
        """ Construct periodic MPC solver
        """

        # system variables and dimensions
        x = self.__vars['x']
        u = self.__vars['u']

        # NLP parameters

        if self.__type == 'economic':

            # parameters
            self.__p = ct.struct_symMX([
                ct.entry('x0', shape=(self.__nx, 1)),
                ct.entry('xN', shape=(self.__nx, 1))
            ])

            # reassign for brevity
            x0 = self.__p['x0']
            xN = self.__p['xN']

        if self.__type == 'tracking':
            ref_vars = (ct.entry('x', shape=(self.__nx, ),
                                 repeat=self.__N + 1),
                        ct.entry('u', shape=(self.__nu, ), repeat=self.__N))

            if 'us' in self.__vars:
                ref_vars += (ct.entry('us',
                                      shape=(self.__ns, ),
                                      repeat=self.__N), )

            # reference trajectory
            wref = ct.struct_symMX([ref_vars])

            nw = self.__nx + self.__nu + self.__ns
            tuning = ct.struct_symMX([  # tracking tuning
                ct.entry('H', shape=(nw, nw), repeat=self.__N),
                ct.entry('q', shape=(nw, 1), repeat=self.__N)
            ])

            # parameters
            self.__p = ct.struct_symMX([
                ct.entry('x0', shape=(self.__nx, )),
                ct.entry('wref', struct=wref),
                ct.entry('tuning', struct=tuning)
            ])

            # reassign for brevity
            x0 = self.__p['x0']
            wref = self.__p.prefix['wref']
            tuning = self.__p.prefix['tuning']
            xN = wref['x', -1]

        # NLP variables
        variables_entry = (ct.entry('x',
                                    shape=(self.__nx, ),
                                    repeat=self.__N + 1),
                           ct.entry('u', shape=(self.__nu, ), repeat=self.__N))

        if 'us' in self.__vars:
            variables_entry += (ct.entry('us',
                                         shape=(self.__ns, ),
                                         repeat=self.__N), )

        self.__wref = ct.struct_symMX([variables_entry
                                       ])  # structure of reference

        if 'usc' in self.__vars:
            variables_entry += (ct.entry('usc',
                                         shape=(self.__nsc, ),
                                         repeat=self.__N), )

        # nlp variables + bounds
        w = ct.struct_symMX([variables_entry])

        # variable bounds are implemented as inequalities
        self.__lbw = w(-np.inf)
        self.__ubw = w(np.inf)

        # prepare dynamics and path constraints entry
        constraints_entry = (ct.entry('dyn',
                                      shape=(self.__nx, ),
                                      repeat=self.__N), )
        if self.__gnl is not None:
            constraints_entry += (ct.entry('g',
                                           shape=self.__gnl.size1_out(0),
                                           repeat=self.__N), )
        if self.__h is not None:
            constraints_entry += (ct.entry('h',
                                           shape=self.__h.size1_out(0),
                                           repeat=self.__N), )

        # terminal constraint
        self.__nx_term = self.__p_operator.size1_out(0)

        # create general constraints structure
        g_struct = ct.struct_symMX([
            ct.entry('init', shape=(self.__nx, 1)), constraints_entry,
            ct.entry('term', shape=(self.__nx_term, 1))
        ])

        # create symbolic constraint expressions
        map_args = collections.OrderedDict()
        map_args['x0'] = ct.horzcat(*w['x', :-1])
        map_args['p'] = ct.horzcat(*w['u'])
        F_constr = ct.horzsplit(self.__F.map(self.__N)(**map_args)['xf'])

        # generate constraints
        constr = collections.OrderedDict()
        constr['dyn'] = [a - b for a, b in zip(F_constr, w['x', 1:])]
        if 'us' in self.__vars:
            map_args['us'] = ct.horzcat(*w['us'])

        if self.__gnl is not None:
            constr['g'] = ct.horzsplit(
                self.__gnl.map(self.__N)(*map_args.values()))

        if 'usc' in self.__vars:
            map_args['usc'] = ct.horzcat(*w['usc'])

        if self.__h is not None:
            constr['h'] = ct.horzsplit(
                self.__h.map(self.__N)(*map_args.values()))

        repeated_constr = list(
            itertools.chain.from_iterable(zip(*constr.values())))

        term_constraint = self.__p_operator(w['x', -1] - xN)

        self.__g = g_struct(
            ca.vertcat(w['x', 0] - x0, *repeated_constr, term_constraint))

        self.__lbg = g_struct(np.zeros(self.__g.shape))
        self.__ubg = g_struct(np.zeros(self.__g.shape))
        if self.__h is not None:
            self.__ubg['h', :] = np.inf
            for i in self.__h_us_idx + self.__h_x_idx:  # rm constraints the only depend on x at k = 0
                self.__lbg['h', 0, i] = -np.inf

        # nlp cost
        cost_map = self.__cost.map(self.__N)

        if self.__type == 'economic':

            cost_args = [ct.horzcat(*w['x', :-1]), ct.horzcat(*w['u'])]

        elif self.__type == 'tracking':

            if self.__ns != 0:
                cost_args_w = ct.horzcat(*[
                    ct.vertcat(w['x', k], w['u', k], w['us', k])
                    for k in range(self.__N)
                ])
                cost_args_w_ref = ct.horzcat(*[
                    ct.vertcat(wref['x', k], wref['u', k], wref['us', k])
                    for k in range(self.__N)
                ])
            else:
                cost_args_w = ct.horzcat(*[
                    ct.vertcat(w['x', k], w['u', k]) for k in range(self.__N)
                ])
                cost_args_w_ref = ct.horzcat(*[
                    ct.vertcat(wref['x', k], wref['u', k])
                    for k in range(self.__N)
                ])

            cost_args = [
                cost_args_w, cost_args_w_ref,
                ct.horzcat(*tuning['H']),
                ct.horzcat(*tuning['q'])
            ]

            if self.__options['hessian_approximation'] == 'gauss_newton':

                if 'usc' not in self.__vars:
                    hess_gn = ct.diagcat(*tuning['H'],
                                         ca.DM.zeros(self.__nx, self.__nx))
                else:
                    hess_block = list(
                        itertools.chain.from_iterable(
                            zip(tuning['H'],
                                [ca.DM.zeros(self.__nsc, self.__nsc)] *
                                self.__N)))
                    hess_gn = ct.diagcat(*hess_block,
                                         ca.DM.zeros(self.__nx, self.__nx))

        J = ca.sum2(cost_map(*cost_args))

        # add cost on slacks
        if 'usc' in self.__vars:
            J += ca.sum2(ct.mtimes(self.__scost.T, ct.horzcat(*w['usc'])))

        # create solver
        prob = {'f': J, 'g': self.__g, 'x': w, 'p': self.__p}
        self.__w = w
        self.__g_fun = ca.Function('g_fun', [self.__w, self.__p], [self.__g])

        # create IPOPT-solver instance if needed
        if self.__options['ipopt_presolve']:
            opts = {
                'ipopt': {
                    'linear_solver': 'ma57',
                    'print_level': 0
                },
                'expand': False
            }
            if Logger.logger.getEffectiveLevel() > 10:
                opts['ipopt']['print_level'] = 0
                opts['print_time'] = 0
                opts['ipopt']['sb'] = 'yes'
            self.__solver = ca.nlpsol('solver', 'ipopt', prob, opts)

        # create hessian approximation function
        if self.__options['hessian_approximation'] == 'gauss_newton':
            lam_g = ca.MX.sym('lam_g', self.__g.shape)  # will not be used
            hess_approx = ca.Function('hess_approx',
                                      [self.__w, self.__p, lam_g], [hess_gn])
        elif self.__options['hessian_approximation'] == 'exact':
            hess_approx = 'exact'

        # create sqp solver
        prob['lbg'] = self.__lbg
        prob['ubg'] = self.__ubg
        sqp_opts = {
            'hessian_approximation': hess_approx,
            'max_iter': self.__options['max_iter']
        }
        self.__sqp_solver = sqp_method.Sqp(prob, sqp_opts)

    def step(self, x0):
        """ Compute periodic MPC feedback control for given initial condition.
        """

        # reset periodic indexing if necessary
        self.__index = self.__index % len(self.__ref)

        # update nlp parameters
        p0 = self.__p(0.0)
        p0['x0'] = x0

        if self.__type == 'economic':

            p0['xN'] = self.__ref[self.__index][-x0.shape[0]:]

        elif self.__type == 'tracking':

            p0['wref'] = self.__ref[self.__index]
            p0['tuning', 'H'] = self.__Href[self.__index]
            p0['tuning', 'q'] = self.__qref[self.__index]

        # pre-solve NLP with IPOPT for globalization
        if self.__options['ipopt_presolve']:

            ipopt_sol = self.__solver(x0=self.__w0,
                                      lbg=self.__lbg,
                                      ubg=self.__ubg,
                                      p=p0)

            self.__w0 = self.__w(ipopt_sol['x'])
            self.__lam_g0 = self.__g(ipopt_sol['lam_g'])

        # solve NLP
        sol = self.__sqp_solver.solve(self.__w0.cat, p0.cat, self.__lam_g0.cat)

        # store solution
        self.__g_sol = self.__g(self.__g_fun(sol['x'], p0))
        self.__w_sol = self.__w(sol['x'])
        self.__extract_solver_stats()

        # shift reference
        self.__index += 1

        # update initial guess
        self.__w0, self.__lam_g0 = self.__shift_initial_guess(
            self.__w_sol, self.__g(sol['lam_g']))

        return self.__w_sol['u', 0]

    def step_acados(self, x0):

        # reset periodic indexing if necessary
        self.__index_acados = self.__index_acados % self.__Nref

        # format x0
        x0 = np.squeeze(x0.full())

        # update NLP parameters
        self.__acados_ocp_solver.set(0, "lbx", x0)
        self.__acados_ocp_solver.set(0, "ubx", x0)

        # update reference and tuning matrices
        self.__set_acados_reference()

        # solve
        status = self.__acados_ocp_solver.solve()

        # timings
        # np.append(self.__acados_times, self.__acados_ocp_solver.get_stats("time_tot"))
        print("acados timings: total: ", self.__acados_ocp_solver.get_stats("time_tot"), \
            " lin: ", self.__acados_ocp_solver.get_stats("time_lin"), \
            " sim: ", self.__acados_ocp_solver.get_stats("time_sim"), " qp: ", \
                 self.__acados_ocp_solver.get_stats("time_qp"))

        # if status != 0:
        #     raise Exception('acados solver returned status {}. Exiting.'.format(status))

        # save solution
        self.__w_sol_acados = self.__w(0.0)
        for i in range(self.__N):
            self.__w_sol_acados['x', i] = self.__acados_ocp_solver.get(i, "x")
            self.__w_sol_acados['u', i] = self.__acados_ocp_solver.get(
                i, "u")[:self.__nu]
            if 'us' in self.__vars:
                self.__w_sol_acados['us', i] = self.__acados_ocp_solver.get(
                    i, "u")[self.__nu:]
        self.__w_sol_acados['x', self.__N] = self.__acados_ocp_solver.get(
            self.__N, "x")
        self.__extract_acados_solver_stats()

        # feedback policy
        u0 = self.__acados_ocp_solver.get(0, "u")[:self.__nu]

        # update initial guess
        self.__shift_initial_guess_acados()

        # shift index
        self.__index_acados += 1

        return u0

    def generate(self, dae=None, quad=None, name='tunempc', opts={}):
        """ Create embeddable NLP solver
        """

        from acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver, AcadosSimSolver

        # extract dimensions
        nx = self.__nx
        nu = self.__nu + self.__ns  # treat slacks as pseudo-controls

        # extract reference
        ref = self.__ref
        xref = np.squeeze(self.__ref[0][:nx], axis=1)
        uref = np.squeeze(self.__ref[0][nx:nx + nu], axis=1)

        # sampling time
        self.__ts = opts['tf'] / self.__N

        # create acados model
        model = AcadosModel()
        model.x = ca.MX.sym('x', nx)
        model.u = ca.MX.sym('u', nu)
        model.p = []
        model.name = name

        # detect input type
        if dae is None:
            model.f_expl_expr = self.__F(x0=model.x,
                                         p=model.u)['xf'] / self.__ts
            opts['integrator_type'] = 'ERK'
            opts['sim_method_num_stages'] = 1
            opts['sim_method_num_steps'] = 1
        else:
            n_in = dae.n_in()
            if n_in == 2:

                # xdot = f(x, u)
                if 'integrator_type' in opts:
                    if opts['integrator_type'] in ['IRK', 'GNSF']:
                        xdot = ca.MX.sym('xdot', nx)
                        model.xdot = xdot
                        model.f_impl_expr = xdot - dae(model.x,
                                                       model.u[:self.__nu])
                        model.f_expl_expr = xdot
                    elif opts['integrator_type'] == 'ERK':
                        model.f_expl_expr = dae(model.x, model.u[:self.__nu])
                else:
                    raise ValueError('Provide numerical integrator type!')

            else:

                xdot = ca.MX.sym('xdot', nx)
                model.xdot = xdot
                model.f_expl_expr = xdot

                if n_in == 3:

                    # f(xdot, x, u) = 0
                    model.f_impl_expr = dae(xdot, model.x, model.u[:self.__nu])

                elif n_in == 4:

                    # f(xdot, x, u, z) = 0
                    nz = dae.size1_in(3)
                    z = ca.MX.sym('z', nz)
                    model.z = z
                    model.f_impl_expr = dae(xdot, model.x, model.u[:self.__nu],
                                            z)
                else:
                    raise ValueError(
                        'Invalid number of inputs for system dynamics function.'
                    )

        if self.__gnl is not None:
            model.con_h_expr = self.__gnl(model.x, model.u[:self.__nu],
                                          model.u[self.__nu:])

        if self.__type == 'economic':
            if quad is None:
                model.cost_expr_ext_cost = self.__cost(
                    model.x, model.u[:self.__nu]) / self.__ts
            else:
                model.cost_expr_ext_cost = self.__cost(model.x,
                                                       model.u[:self.__nu])

        # create acados ocp
        ocp = AcadosOcp()
        ocp.model = model
        ny = nx + nu
        ny_e = nx

        if 'integrator_type' in opts and opts['integrator_type'] == 'GNSF':
            from acados_template import acados_dae_model_json_dump
            import os
            acados_dae_model_json_dump(model)
            # Set up Octave to be able to run the following:
            ## if using a virtual python env, the following lines can be added to the env/bin/activate script:
            # export OCTAVE_PATH=$OCTAVE_PATH:$ACADOS_INSTALL_DIR/external/casadi-octave
            # export OCTAVE_PATH=$OCTAVE_PATH:$ACADOS_INSTALL_DIR/interfaces/acados_matlab_octave/
            # export OCTAVE_PATH=$OCTAVE_PATH:$ACADOS_INSTALL_DIR/interfaces/acados_matlab_octave/acados_template_mex/
            # echo
            # echo "OCTAVE_PATH=$OCTAVE_PATH"
            status = os.system(
                "octave --eval \"convert({})\"".format("\'" + model.name +
                                                       "_acados_dae.json\'"))
            # load gnsf from json
            with open(model.name + '_gnsf_functions.json', 'r') as f:
                import json
                gnsf_dict = json.load(f)
            ocp.gnsf_model = gnsf_dict

        # set horizon length
        ocp.dims.N = self.__N

        # set cost module
        if self.__type == 'economic':

            # set cost function type to external (provided in model)
            ocp.cost.cost_type = 'EXTERNAL'

            if quad is not None:
                ocp.solver_options.cost_discretization = 'INTEGRATOR'

        elif self.__type == 'tracking':

            # set weighting matrices
            ocp.cost.W = self.__Href[0][0]

            # set-up linear least squares cost
            ocp.cost.cost_type = 'LINEAR_LS'
            ocp.cost.W_e = np.zeros((nx, nx))
            ocp.cost.Vx = np.zeros((ny, nx))
            ocp.cost.Vx[:nx, :nx] = np.eye(nx)
            Vu = np.zeros((ny, nu))
            Vu[nx:, :] = np.eye(nu)
            ocp.cost.Vu = Vu
            ocp.cost.Vx_e = np.eye(nx)
            ocp.cost.yref  = np.squeeze(
                ca.vertcat(xref,uref).full() - \
                ct.mtimes(np.linalg.inv(ocp.cost.W),self.__qref[0][0].T).full(), # gradient term
                axis = 1
                )
            ocp.cost.yref_e = np.zeros((ny_e, ))
            if n_in == 4:  # DAE flag
                ocp.cost.Vz = np.zeros((ny, nz))

        # if 'custom_hessian' in opts:
        #     self.__custom_hessian = opts['custom_hessian']

        # initial condition
        ocp.constraints.x0 = xref

        # set inequality constraints
        ocp.constraints.constr_type = 'BGH'
        if self.__S['C'] is not None:
            C = self.__S['C'][0][:, :nx]
            D = self.__S['C'][0][:, nx:]
            lg = -self.__S['e'][0] + ct.mtimes(C, xref).full() + ct.mtimes(
                D, uref).full()
            ug = 1e8 - self.__S['e'][0] + ct.mtimes(
                C, xref).full() + ct.mtimes(D, uref).full()
            ocp.constraints.lg = np.squeeze(lg, axis=1)
            ocp.constraints.ug = np.squeeze(ug, axis=1)
            ocp.constraints.C = C
            ocp.constraints.D = D

            if 'usc' in self.__vars:
                if 'us' in self.__vars:
                    arg = [
                        self.__vars['x'], self.__vars['u'], self.__vars['us'],
                        self.__vars['usc']
                    ]
                else:
                    arg = [
                        self.__vars['x'], self.__vars['u'], self.__vars['usc']
                    ]
                Jsg = ca.Function(
                    'Jsg', [self.__vars['usc']],
                    [ca.jacobian(self.__h(*arg), self.__vars['usc'])])(0.0)
                self.__Jsg = Jsg.full()[:-self.__nsc, :]
                ocp.constraints.Jsg = self.__Jsg
                ocp.cost.Zl = np.zeros((self.__nsc, ))
                ocp.cost.Zu = np.zeros((self.__nsc, ))
                ocp.cost.zl = np.squeeze(self.__scost.full(),
                                         axis=1) / self.__ts
                ocp.cost.zu = np.squeeze(self.__scost.full(),
                                         axis=1) / self.__ts

        # set nonlinear equality constraints
        if self.__gnl is not None:
            ocp.constraints.lh = np.zeros(self.__ns, )
            ocp.constraints.uh = np.zeros(self.__ns, )

        # terminal constraint:
        x_term = self.__p_operator(model.x)
        Jbx = ca.Function('Jbx', [model.x],
                          [ca.jacobian(x_term, model.x)])(0.0)
        ocp.constraints.Jbx_e = Jbx.full()
        ocp.constraints.lbx_e = np.squeeze(self.__p_operator(xref).full(),
                                           axis=1)
        ocp.constraints.ubx_e = np.squeeze(self.__p_operator(xref).full(),
                                           axis=1)

        for option in list(opts.keys()):
            if hasattr(ocp.solver_options, option):
                setattr(ocp.solver_options, option, opts[option])

        self.__acados_ocp_solver = AcadosOcpSolver(ocp,
                                                   json_file='acados_ocp_' +
                                                   model.name + '.json')
        self.__acados_integrator = AcadosSimSolver(ocp,
                                                   json_file='acados_ocp_' +
                                                   model.name + '.json')

        # set initial guess
        self.__set_acados_initial_guess()

        return self.__acados_ocp_solver, self.__acados_integrator

    def __create_reference(self, wref, tuning, lam_g_ref):
        """ Create periodic reference and tuning data.
        """

        # period of reference
        self.__Nref = len(wref['u'])

        # create reference and tuning sequence
        # for each starting point in period
        ref_pr = []
        ref_du = []
        ref_du_struct = []
        H = []
        q = []

        for k in range(self.__Nref):

            # reference primal solution
            refk = []
            for j in range(self.__N):

                refk += [
                    wref['x', (k + j) % self.__Nref],
                    wref['u', (k + j) % self.__Nref]
                ]

                if 'us' in self.__vars:
                    refk += [wref['us', (k + j) % self.__Nref]]

            refk.append(wref['x', (k + self.__N) % self.__Nref])

            # reference dual solution
            lamgk = self.__g(0.0)
            lamgk['init'] = -lam_g_ref['dyn', (k - 1) % self.__Nref]
            for j in range(self.__N):
                lamgk['dyn', j] = lam_g_ref['dyn', (k + j) % self.__Nref]
                if 'g' in list(lamgk.keys()):
                    lamgk['g', j] = lam_g_ref['g', (k + j) % self.__Nref]
                if 'h' in list(lamgk.keys()):
                    lam_h = [lam_g_ref['h', (k + j) % self.__Nref]]
                    if 'usc' in self.__vars:
                        lam_h += [-self.__scost]  # TODO not entirely correct

                    lamgk['h', j] = ct.vertcat(*lam_h)
            lamgk['term'] = self.__p_operator(
                lam_g_ref['dyn', (k + self.__N - 1) % self.__Nref])

            # adjust dual solution of terminal constraint is projected
            if self.__nx_term != self.__nx:

                # find new terminal multiplier
                A_m = []
                b_m = []
                A_factor = ca.DM.eye(self.__nx)
                for j in range(self.__N):
                    A_m.append(
                        ct.mtimes(
                            ct.mtimes(
                                self.__S['B'][(self.__N - j - 1) %
                                              self.__Nref].T, A_factor),
                            self.__jac_p_operator(ca.DM.ones(self.__nx, 1)).T))
                    b_m.append(
                        ct.mtimes(
                            ct.mtimes(
                                self.__S['B'][(self.__N - j - 1) %
                                              self.__Nref].T, A_factor),
                            lam_g_ref['dyn',
                                      (k + self.__N - 1) % self.__Nref]))
                    A_factor = ct.mtimes(
                        self.__S['A'][(self.__N - j - 1) % self.__Nref].T,
                        A_factor)
                A_m = ct.vertcat(*A_m)
                b_m = ct.vertcat(*b_m)
                LI_indeces = [
                ]  # indeces of first full rank number linearly independent rows
                R0 = 0
                for i in range(A_m.shape[0]):
                    R = np.linalg.matrix_rank(A_m[LI_indeces + [i], :])
                    if R > R0:
                        LI_indeces.append(i)
                        R0 = R
                lamgk['term'] = ca.solve(A_m[LI_indeces, :],
                                         b_m[LI_indeces, :])

                # recursively update dynamics multipliers
                delta_lam = -lam_g_ref['dyn', (k + self.__N - 1) %
                                       self.__Nref] + ct.mtimes(
                                           self.__jac_p_operator(
                                               ca.DM.ones(self.__nx, 1)).T,
                                           lamgk['term'])
                lamgk['dyn', self.__N - 1] += delta_lam
                for j in range(1, self.__N + 1):
                    delta_lam = ct.mtimes(
                        self.__S['A'][(self.__N - j) % self.__Nref].T,
                        delta_lam)
                    if j < self.__N:
                        lamgk['dyn', self.__N - 1 - j] += delta_lam
                    else:
                        lamgk['init'] += -delta_lam

            ref_pr.append(ct.vertcat(*refk))
            ref_du.append(lamgk.cat)
            ref_du_struct.append(lamgk)

            if tuning is not None:
                H.append([
                    tuning['H'][(k + j) % self.__Nref] for j in range(self.__N)
                ])
                q.append([
                    tuning['q'][(k + j) % self.__Nref] for j in range(self.__N)
                ])

        self.__ref = ref_pr
        self.__ref_du = ref_du
        self.__ref_du_struct = ref_du_struct
        self.__Href = H
        self.__qref = q

        return None

    def __initialize_log(self):

        self.__log = {
            'cpu': [],
            'iter': [],
            'f': [],
            'status': [],
            'sol_x': [],
            'lam_x': [],
            'lam_g': [],
            'u0': [],
            'nACtot': [],
            'nAC': [],
            'idx_AC': [],
            'nAS': []
        }

        self.__log_acados = {
            'time_tot': [],
            'time_lin': [],
            'time_sim': [],
            'time_qp': [],
            'sqp_iter': [],
            'time_reg': [],
            'time_qp_xcond': [],
            'time_qp_solver_call': [],
        }

        return None

    def __extract_solver_stats(self):

        info = self.__sqp_solver.stats
        self.__log['cpu'].append(info['t_wall_total'])
        self.__log['iter'].append(info['iter_count'])
        self.__log['status'].append(info['return_status'])
        self.__log['sol_x'].append(info['x'])
        self.__log['lam_g'].append(info['lam_g'])
        self.__log['f'].append(info['f'])
        self.__log['u0'].append(self.__w(info['x'])['u', 0])
        self.__log['nACtot'].append(info['nAC'])
        nAC, idx_AC = self.__detect_AC(self.__g(info['lam_g']))
        self.__log['nAC'].append(nAC)
        self.__log['idx_AC'].append(nAC)
        self.__log['nAS'].append(info['nAS'])

        return None

    def __extract_acados_solver_stats(self):

        for key in list(self.__log_acados.keys()):
            self.__log_acados[key].append(
                self.__acados_ocp_solver.get_stats(key))

        return None

    def __detect_AC(self, lam_g_opt):

        # optimal active set
        if 'h' in lam_g_opt.keys():
            idx_opt = [
                k for k in range(self.__h.size1_out(0) - self.__nsc)
                if lam_g_opt['h', 0][k] != 0
            ]
            lam_g_ref = self.__g(self.__ref_du[self.__index])
            idx_ref = [
                k for k in range(self.__h.size1_out(0) - self.__nsc)
                if lam_g_ref['h', 0][k] != 0
            ]

        else:
            idx_opt = []
            idx_ref = []

        # get number of active set changes
        nAC = len([k for k in idx_opt if k not in idx_ref])
        nAC += len([k for k in idx_ref if k not in idx_opt])

        return nAC, idx_opt

    def reset(self):

        self.__index = 0
        self.__index_acados = 0
        self.__initialize_log()
        self.__set_initial_guess()

        return None

    def __shift_initial_guess(self, w0, lam_g0):

        w_shifted = self.__w(0.0)
        lam_g_shifted = self.__g(0.0)
        lam_g_shifted['init'] = lam_g0['dyn', 0]

        # shift states and controls
        for i in range(self.__N):

            # shift primal solution
            w_shifted['x', i] = w0['x', i + 1]

            if i < self.__N - 1:
                w_shifted['u', i] = w0['u', i + 1]
                if 'us' in self.__vars:
                    w_shifted['us', i] = w0['us', i + 1]
                if 'usc' in self.__vars:
                    w_shifted['usc', i] = w0['usc', i + 1]

                # shift dual solution
                lam_g_shifted['dyn', i] = lam_g0['dyn', i + 1]
                for constr in ['g', 'h']:
                    if constr in lam_g0.keys():
                        lam_g_shifted[constr, i] = lam_g0[constr, i + 1]

        # copy final interval
        w_shifted['x', self.__N] = w_shifted['x', self.__N - 1]
        w_shifted['u', self.__N - 1] = w_shifted['u', self.__N - 2]
        if 'us' in self.__vars:
            w_shifted['us', self.__N - 1] = w_shifted['us', self.__N - 2]
        if 'usc' in self.__vars:
            w_shifted['usc', self.__N - 1] = w_shifted['usc', self.__N - 2]

        lam_g_shifted['dyn', self.__N - 1] = lam_g_shifted['dyn', self.__N - 2]
        for constr in ['g', 'h']:
            if constr in lam_g0.keys():
                lam_g_shifted[constr,
                              self.__N - 1] = lam_g_shifted[constr,
                                                            self.__N - 2]
        lam_g_shifted['term'] = lam_g0['term']

        return w_shifted, lam_g_shifted

    def __shift_initial_guess_acados(self):

        for i in range(self.__N):
            x_prev = np.squeeze(self.__w_sol_acados['x', i + 1].full(), axis=1)
            self.__acados_ocp_solver.set(i, "x", x_prev)
            if i < self.__N - 1:
                u_prev = np.squeeze(self.__w_sol_acados['u', i + 1].full(),
                                    axis=1)
                if 'us' in self.__vars:
                    u_prev = np.squeeze(ct.vertcat(
                        u_prev, self.__w_sol_acados['us', i + 1]).full(),
                                        axis=1)
                self.__acados_ocp_solver.set(i, "u", u_prev)

        # initial guess in terminal stage on periodic trajectory
        idx = (self.__index_acados + self.__N) % self.__Nref

        # reference
        xref = np.squeeze(self.__ref[(idx + 1) % self.__Nref][:self.__nx],
                          axis=1)
        uref = np.squeeze(self.__ref[idx][self.__nx:self.__nx + self.__nu +
                                          self.__ns],
                          axis=1)
        self.__acados_ocp_solver.set(self.__N, "x", xref)
        self.__acados_ocp_solver.set(self.__N - 1, "u", uref)

        return None

    def __set_initial_guess(self):

        # create initial guess at steady state
        wref = self.__wref(self.__ref[self.__index])
        w0 = self.__w(0.0)
        w0['x'] = wref['x']
        w0['u'] = wref['u']
        if 'us' in self.__vars:
            w0['us'] = wref['us']
        self.__w0 = w0

        # initial guess for multipliers
        self.__lam_g0 = self.__g(self.__ref_du[self.__index])

        # acados solver initialization at reference
        if self.__acados_ocp_solver is not None:
            self.__set_acados_initial_guess()

        return None

    def __set_acados_reference(self):

        for i in range(self.__N):

            # periodic index
            idx = (self.__index_acados + i) % self.__Nref

            # reference
            xref = np.squeeze(self.__ref[idx][:self.__nx], axis=1)
            uref = np.squeeze(self.__ref[idx][self.__nx:self.__nx + self.__nu +
                                              self.__ns],
                              axis=1)

            if self.__type == 'tracking':

                # construct output reference with gradient term
                yref = np.squeeze(
                    ca.vertcat(xref,uref).full() - \
                    ct.mtimes(
                        np.linalg.inv(self.__Href[idx][0]/self.__ts), # inverse of weighting matrix
                        self.__qref[idx][0].T).full()/self.__ts, # gradient term
                    axis = 1
                    )
                self.__acados_ocp_solver.set(i, 'yref', yref)

                # update tuning matrix
                self.__acados_ocp_solver.cost_set(
                    i, 'W', self.__Href[idx][0] / self.__ts)

            # set custom hessians if applicable
            # if self.__acados_ocp_solver.acados_ocp.solver_options.ext_cost_custom_hessian:
            #     self.__acados_ocp_solver.cost_set(i, "cost_custom_hess", self.__custom_hessian[idx])

            # update constraint bounds
            if self.__h is not None:
                C = self.__S['C'][idx][:, :self.__nx]
                D = self.__S['C'][idx][:, self.__nx:]
                lg = -self.__S['e'][idx] + ct.mtimes(
                    C, xref).full() + ct.mtimes(D, uref).full()
                ug = 1e8 - self.__S['e'][idx] + ct.mtimes(
                    C, xref).full() + ct.mtimes(D, uref).full()

                # remove constraints that depend on states only from first shooting node
                if i == 0:
                    for k in range(D.shape[0]):
                        if k in self.__h_us_idx + self.__h_x_idx:
                            lg[k] += -1e8

                self.__acados_ocp_solver.constraints_set(
                    i, 'lg', np.squeeze(lg, axis=1))
                self.__acados_ocp_solver.constraints_set(
                    i, 'ug', np.squeeze(ug, axis=1))

        # update terminal constraint
        idx = (self.__index_acados + self.__N) % self.__Nref
        x_term = np.squeeze(self.__p_operator(self.__ref[idx][:self.__nx]),
                            axis=1)
        self.__acados_ocp_solver.set(self.__N, 'lbx', x_term)
        self.__acados_ocp_solver.set(self.__N, 'ubx', x_term)

        return None

    def __set_acados_initial_guess(self):

        # dual reference solution
        ref_dual = self.__ref_du_struct[self.__index_acados % self.__Nref]

        for i in range(self.__N):

            # periodic index
            idx = (self.__index_acados + i) % self.__Nref

            # initialize at reference
            xref = np.squeeze(self.__ref[idx][:self.__nx], axis=1)
            uref = np.squeeze(self.__ref[idx][self.__nx:self.__nx + self.__nu +
                                              self.__ns],
                              axis=1)

            # set initial guess
            self.__acados_ocp_solver.set(i, "x", xref)
            self.__acados_ocp_solver.set(i, "u", uref)

            # set dual initial guess
            self.__acados_ocp_solver.set(i, "pi",
                                         np.squeeze(ref_dual['dyn', i].full()))

            # the inequalities are internally organized in the following order:
            # [ lbu lbx lg lh ubu ubx ug uh ]
            lam_h = []
            t = []
            if i == 0:
                lam_x0 = copy.deepcopy(ref_dual['init'])
                if 'h' in list(ref_dual.keys()):
                    lam_lh0 = -ref_dual['h', i][:ref_dual['h', i].shape[0] -
                                                self.__nsc]
                    t_lh0 = copy.deepcopy(self.__S['e'][idx % self.__Nref])
                    if i == 0:
                        # set unused constraints at i=0 to be inactive
                        C = self.__S['C'][idx][:, :self.__nx]
                        D = self.__S['C'][idx][:, self.__nx:]
                        for k in range(D.shape[0]):
                            if k in self.__h_us_idx + self.__h_x_idx:
                                lam_x0 += -ct.mtimes(lam_lh0[k], C[k, :])
                                lam_lh0[k] = 0.0
                                t_lh0[k] += 1e8
                lam_lx0 = -copy.deepcopy(lam_x0)
                for k in range(self.__nx):
                    if lam_lx0[k] < 0.0:
                        lam_lx0[k] = 0.0  # assign multiplier to upper bound
                lam_h.append(lam_lx0)  # lbx_0
                t.append(np.zeros((self.__nx, )))
            if 'h' in list(ref_dual.keys()):
                if i == 0:
                    lam_lh = lam_lh0
                    t_lh = t_lh0
                else:
                    lam_lh = -ref_dual['h', i][:ref_dual['h', i].shape[0] -
                                               self.__nsc]
                    t_lh = copy.deepcopy(self.__S['e'][idx % self.__Nref])
                lam_h.append(lam_lh)  # lg
                t.append(t_lh)
            if 'g' in list(ref_dual.keys()):
                lam_lg0 = -ref_dual['g', i]
                lam_ug0 = np.zeros(lam_lg0.shape)
                for k in range(lam_lg0.shape[0]):
                    if lam_lg0[k] < 0.0:
                        lam_ug0[k] = -lam_lg0[k]
                        lam_lg0[k] = 0.0
                lam_h.append(lam_lg0)  # lh
                t.append(np.zeros((ref_dual['g', i].shape[0], )))
            if i == 0:
                lam_ux0 = copy.deepcopy(lam_x0)
                for k in range(self.__nx):
                    if lam_ux0[k] < 0.0:
                        lam_ux0[k] = 0.0  # assign multiplier to lower bound
                lam_h.append(lam_ux0)  # ubx_0
                t.append(np.zeros((self.__nx, )))
            if 'h' in list(ref_dual.keys()):
                lam_h.append(
                    np.zeros((ref_dual['h', i].shape[0] - self.__nsc, )))  # ug
                t.append(1e8 *
                         np.ones((ref_dual['h', i].shape[0] - self.__nsc, 1)) -
                         self.__S['e'][idx])
            if 'g' in list(ref_dual.keys()):
                lam_h.append(lam_ug0)  # uh
                t.append(np.zeros((ref_dual['g', i].shape[0], )))
            if self.__nsc > 0:
                lam_sl = self.__scost - ct.mtimes(lam_lh.T, self.__Jsg).T
                lam_h.append(lam_sl)  # ls
                lam_h.append(self.__scost)  # us
                t.append(np.zeros((self.__nsc, )))  # slg > 0
                t.append(np.zeros((self.__nsc, )))  # sug > 0
            if len(lam_h) != 0:
                self.__acados_ocp_solver.set(
                    i, "lam", np.squeeze(ct.vertcat(*lam_h).full()))
                self.__acados_ocp_solver.set(i, "t",
                                             np.squeeze(ct.vertcat(*t).full()))

        # terminal state
        idx = (self.__index_acados + self.__N) % self.__Nref
        xref = np.squeeze(self.__ref[idx][:self.__nx], axis=1)
        self.__acados_ocp_solver.set(self.__N, "x", xref)

        # terminal multipliers
        lam_lterm = -ref_dual['term']
        lam_uterm = np.zeros((ref_dual['term'].shape[0], ))
        for k in range(lam_lterm.shape[0]):
            if lam_lterm[k] < 0.0:
                lam_uterm[k] = -lam_lterm[k]
                lam_lterm[k] = 0.0
        lam_term = np.squeeze(ct.vertcat(lam_lterm, lam_uterm).full())
        self.__acados_ocp_solver.set(self.__N, "lam", lam_term)

        return None

    def __detect_state_dependent_constraints(self):
        """ Detect which nonlinear equalities depend on states but not on controls.
        """

        g_nl = self.__gnl(self.__vars['x'], self.__vars['u'],
                          self.__vars['us'])
        self.__gnl_x_idx = []
        for i in range(g_nl.shape[0]):
            if not True in ca.which_depends(g_nl[i], self.__vars['u'], 1):
                self.__gnl_x_idx.append(i)
        self.__h_us_idx = [
            idx + self.__h.size1_out(0) - self.__ns for idx in self.__gnl_x_idx
        ]

        return None

    @property
    def w(self):
        return self.__w

    @property
    def g_sol(self):
        return self.__g_sol

    @property
    def w_sol(self):
        return self.__w_sol

    @property
    def log(self):
        return self.__log

    @property
    def log_acados(self):
        return self.__log_acados

    @property
    def index(self):
        return self.__index

    @property
    def acados_ocp_solver(self):
        return self.__acados_ocp_solver

    @property
    def acados_integrator(self):
        return self.__acados_integrator

    @property
    def w_sol_acados(self):
        return self.__w_sol_acados
def run_nominal_control(chain_params):
    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # chain parameters
    n_mass = chain_params["n_mass"]
    M = chain_params["n_mass"] - 2 # number of intermediate masses
    Ts = chain_params["Ts"]
    Tsim = chain_params["Tsim"]
    N = chain_params["N"]
    u_init = chain_params["u_init"]
    with_wall = chain_params["with_wall"]
    yPosWall = chain_params["yPosWall"]
    m = chain_params["m"]
    D = chain_params["D"]
    L = chain_params["L"]
    perturb_scale = chain_params["perturb_scale"]

    nlp_iter = chain_params["nlp_iter"]
    nlp_tol = chain_params["nlp_tol"]
    save_results = chain_params["save_results"]
    show_plots = chain_params["show_plots"]
    seed = chain_params["seed"]

    np.random.seed(seed)

    nparam = 3*M
    W = perturb_scale * np.eye(nparam)

    # export model
    model = export_disturbed_chain_mass_model(n_mass, m, D, L)

    # set model
    ocp.model = model

    nx = model.x.size()[0]
    nu = model.u.size()[0]
    ny = nx + nu
    ny_e = nx
    Tf = N * Ts

    # initial state
    xPosFirstMass = np.zeros((3,1))
    xEndRef = np.zeros((3,1))
    xEndRef[0] = L * (M+1) * 6
    pos0_x = np.linspace(xPosFirstMass[0], xEndRef[0], n_mass)

    xrest = compute_steady_state(n_mass, m, D, L, xPosFirstMass, xEndRef)

    x0 = xrest

    # set dimensions
    ocp.dims.N = N

    # set cost module
    ocp.cost.cost_type = 'LINEAR_LS'
    ocp.cost.cost_type_e = 'LINEAR_LS'

    Q = 2*np.diagflat( np.ones((nx, 1)) )
    q_diag = np.ones((nx,1))
    strong_penalty = M+1
    q_diag[3*M] = strong_penalty
    q_diag[3*M+1] = strong_penalty
    q_diag[3*M+2] = strong_penalty
    Q = 2*np.diagflat( q_diag )

    R = 2*np.diagflat( 1e-2 * np.ones((nu, 1)) )

    ocp.cost.W = scipy.linalg.block_diag(Q, R)
    ocp.cost.W_e = Q

    ocp.cost.Vx = np.zeros((ny, nx))
    ocp.cost.Vx[:nx,:nx] = np.eye(nx)

    Vu = np.zeros((ny, nu))
    Vu[nx:nx+nu, :] = np.eye(nu)
    ocp.cost.Vu = Vu

    ocp.cost.Vx_e = np.eye(nx)

    # import pdb; pdb.set_trace()
    yref = np.vstack((xrest, np.zeros((nu,1)))).flatten()
    ocp.cost.yref = yref
    ocp.cost.yref_e = xrest.flatten()

    # set constraints
    umax = 1*np.ones((nu,))

    ocp.constraints.constr_type = 'BGH'
    ocp.constraints.lbu = -umax
    ocp.constraints.ubu = umax
    ocp.constraints.x0 = x0.reshape((nx,))
    ocp.constraints.idxbu = np.array(range(nu))

    # disturbances
    nparam = 3*M
    ocp.parameter_values = np.zeros((nparam,))

    # wall constraint
    if with_wall:
        nbx = M + 1
        Jbx = np.zeros((nbx,nx))
        for i in range(nbx):
            Jbx[i, 3*i+1] = 1.0

        ocp.constraints.Jbx = Jbx
        ocp.constraints.lbx = yPosWall * np.ones((nbx,))
        ocp.constraints.ubx = 1e9 * np.ones((nbx,))

        # slacks
        ocp.constraints.Jsbx = np.eye(nbx)
        L2_pen = 1e3
        L1_pen = 1
        ocp.cost.Zl = L2_pen * np.ones((nbx,))
        ocp.cost.Zu = L2_pen * np.ones((nbx,))
        ocp.cost.zl = L1_pen * np.ones((nbx,))
        ocp.cost.zu = L1_pen * np.ones((nbx,))


    # solver options
    ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES
    ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
    ocp.solver_options.integrator_type = 'IRK'
    ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI
    ocp.solver_options.nlp_solver_max_iter = nlp_iter

    ocp.solver_options.sim_method_num_stages = 2
    ocp.solver_options.sim_method_num_steps = 2
    ocp.solver_options.qp_solver_cond_N = N
    ocp.solver_options.qp_tol = nlp_tol
    ocp.solver_options.tol = nlp_tol
    # ocp.solver_options.nlp_solver_tol_eq = 1e-9

    # set prediction horizon
    ocp.solver_options.tf = Tf

    acados_ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp_' + model.name + '.json')

    # acados_integrator = AcadosSimSolver(ocp, json_file = 'acados_ocp_' + model.name + '.json')
    acados_integrator = export_chain_mass_integrator(n_mass, m, D, L)

    #%% get initial state from xrest
    xcurrent = x0.reshape((nx,))
    for i in range(5):
        acados_integrator.set("x", xcurrent)
        acados_integrator.set("u", u_init)

        status = acados_integrator.solve()
        if status != 0:
            raise Exception('acados integrator returned status {}. Exiting.'.format(status))

        # update state
        xcurrent = acados_integrator.get("x")

    #%% actual simulation
    N_sim = int(np.floor(Tsim/Ts))
    simX = np.ndarray((N_sim+1, nx))
    simU = np.ndarray((N_sim, nu))
    wall_dist = np.zeros((N_sim,))

    timings = np.zeros((N_sim,))

    simX[0,:] = xcurrent

    # closed loop
    for i in range(N_sim):

        # solve ocp
        acados_ocp_solver.set(0, "lbx", xcurrent)
        acados_ocp_solver.set(0, "ubx", xcurrent)

        status = acados_ocp_solver.solve()
        timings[i] = acados_ocp_solver.get_stats("time_tot")[0]

        if status != 0:
            raise Exception('acados acados_ocp_solver returned status {} in time step {}. Exiting.'.format(status, i))

        simU[i,:] = acados_ocp_solver.get(0, "u")
        print("control at time", i, ":", simU[i,:])

        # simulate system
        acados_integrator.set("x", xcurrent)
        acados_integrator.set("u", simU[i,:])

        pertubation = sampleFromEllipsoid(np.zeros((nparam,)), W)
        acados_integrator.set("p", pertubation)

        status = acados_integrator.solve()
        if status != 0:
            raise Exception('acados integrator returned status {}. Exiting.'.format(status))

        # update state
        xcurrent = acados_integrator.get("x")
        simX[i+1,:] = xcurrent

        # xOcpPredict = acados_ocp_solver.get(1, "x")
        # print("model mismatch = ", str(np.max(xOcpPredict - xcurrent)))
        yPos = xcurrent[range(1,3*M+1,3)]
        wall_dist[i] = np.min(yPos - yPosWall)
        print("time i = ", str(i), " dist2wall ", str(wall_dist[i]))

    print("dist2wall (minimum over simulation) ", str(np.min(wall_dist)))

    #%% plot results
    if os.environ.get('ACADOS_ON_TRAVIS') is None and show_plots:
        plot_chain_control_traj(simU)
        plot_chain_position_traj(simX, yPosWall=yPosWall)
        plot_chain_velocity_traj(simX)

        animate_chain_position(simX, xPosFirstMass, yPosWall=yPosWall)
        # animate_chain_position_3D(simX, xPosFirstMass)

        plt.show()