Esempio n. 1
0
def display(cmd_args, in_que, log_que, log_level, kill_proc, kill_app):

    logger = get_logger(log_que, log_level)

    try:
        logger.info('Display process starting')
        while kill_app.value == 0 and kill_proc.value == 0:

            try:
                obj = in_que.get(block=True, timeout=1)
            except Empty as emp:
                logger.debug('Input que to display is empty.')
                continue

            if obj.get('done', False):
                break

            if not draw(obj, logger):
                kill_proc.value = 1
                kill_app.value = 1
                break

    except Exception as ex:
        logger.error(traceback.format_exc())
        kill_app.value = 1
    finally:
        logger.info('Exiting from Display process')
Esempio n. 2
0
def video_writer(cmd_args, in_que, log_que, log_level, kill_proc, kill_app):

    logger = get_logger(log_que, log_level)

    video = cv2.VideoWriter(cmd_args.video_out,
                            cv2.VideoWriter_fourcc(*'mp4v'), cmd_args.fps,
                            (cmd_args.img_width, cmd_args.img_height))

    try:

        while kill_app.value == 0 and kill_proc.value == 0:

            try:
                obj = in_que.get(block=True, timeout=1)
            except Empty as emp:
                logger.debug('Input que to display is empty.')
                continue

            if obj.get('done', False):
                break

            frame = draw_on_frame(obj)
            video.write(frame)

    except Exception as ex:
        logger.error(traceback.format_exc())
        kill_app.value = 1
    finally:
        logger.info('Exiting from VideoWriter process')
def face_detector(cmd_args, in_que, out_que, log_que, log_level, kill_proc, kill_app):

    logger = get_logger(log_que, log_level)

    try:
        logger.debug('FaceDetector process starting')
        detection_threshold = cmd_args.detection_threshold
        min_face_height = cmd_args.min_face_height
        logger.info("Loading Face detector model...")
        mtcnn = MTCNN()

        while kill_proc.value == 0 and kill_app.value == 0:

            try:
                obj = in_que.get(block=True, timeout=1)
            except Empty as emp:
                logger.debug('Input que to face detector is empty.')
                continue

            if obj.get('done', False):
                out_que.put(obj)
                break

            obj = detect_face(obj,mtcnn,detection_threshold,min_face_height, logger)
            out_que.put(obj)

    except Exception as ex:
        logger.error(traceback.format_exc())
        kill_proc.value = 1
        kill_app.value = 1
    finally:
        logger.info('Exiting from Face Detector')
    def __init__(self, cmd_args, in_que, log_que, log_level, kill_app, is_sub_proc=False):
        self.is_sub_proc = is_sub_proc
        self.logger = get_logger(log_que, log_level)

        super(ImageWriter, self).__init__(None,
                                      cmd_args=cmd_args,
                                      in_que=in_que,
                                      log_que=log_que,
                                      log_level=log_level,
                                      kill_app=kill_app)
Esempio n. 5
0
    def __init__(self,
                 cmd_args,
                 in_que,
                 log_que,
                 log_level,
                 kill_app,
                 is_sub_proc=False):
        self.is_sub_proc = is_sub_proc
        self.logger = get_logger(log_que, log_level)

        super(Display, self).__init__(display,
                                      cmd_args=cmd_args,
                                      in_que=in_que,
                                      log_que=log_que,
                                      log_level=log_level,
                                      kill_app=kill_app)
    def __init__(self, cmd_args, in_que, out_que, log_que, log_level, kill_app, is_sub_proc=False):
        self.is_sub_proc = is_sub_proc

        if is_sub_proc is False:
            self.logger = get_logger(log_que, log_level)
            self.mtcnn = MTCNN()
            self.graph = tf.get_default_graph()
            self.session = tf.Session(graph=self.graph)

        super(FaceDetector, self).__init__(face_detector,
                                           cmd_args=cmd_args,
                                           in_que=in_que,
                                           out_que=out_que,
                                           log_que=log_que,
                                           log_level=log_level,
                                           kill_app=kill_app)
Esempio n. 7
0
def embedding_generator(cmd_args, in_que, log_que, log_level, kill_proc,
                        kill_app):

    logger = get_logger(log_que, log_level)

    try:
        logger.info("Generating embeddings...")
        face_group_manager = FaceGroupLocalManager(cmd_args)
        face_group_manager.create_face_group(cmd_args.face_group or 'default')

        while kill_proc.value == 0 and kill_app.value == 0:
            try:
                obj = in_que.get(block=True, timeout=1)
            except Empty as emp:
                logger.debug('Input que to face detector is empty.')
                continue

            if obj.get('done', False):
                kill_app.value = 1
                break

            if len(obj.get('faces', [])) == 1:
                face_group_manager.append_to_face_group(
                    cmd_args.face_group or 'default', obj['embeddings'][0],
                    obj['label'])
                logger.info("Face {} added.".format(obj['label']))
            else:
                logger.error("0 or more than 1 face detected for {}".format(
                    obj['label']))

        logger.info('Completed!')

    except Exception as ex:
        logger.error(traceback.format_exc())
        kill_app.value = 1
    finally:
        logger.info('Exiting from Embedding Generator')
def face_recogniser(cmd_args, in_que, out_que, log_que, log_level, kill_proc,
                    kill_app):

    logger = get_logger(log_que, log_level)

    try:

        logger.debug("Loading Face recognition model...")
        fg_manager = FaceGroupLocalManager(cmd_args)
        fg = fg_manager.get_face_group(cmd_args.face_group)
        known_embeddings = fg.embeddings
        known_labels = fg.labels
        known_face_ids = fg.faceIds

        while kill_proc.value == 0 and kill_app.value == 0:

            try:
                obj = in_que.get(block=True, timeout=1)
            except Empty as emp:
                logger.debug('Input que to face encoder is empty.')
                continue

            if obj.get('done', False):
                out_que.put(obj)
                break

            obj = recognise(obj, known_embeddings, known_labels,
                            known_face_ids, cmd_args.recognition_threshold)

            out_que.put(obj)

    except Exception as ex:
        logger.error(traceback.format_exc())
        kill_app.value = 1
    finally:
        logger.info('Exiting from Face Recogniser')
Esempio n. 9
0
def capture(cmd_args, out_queue, log_que, log_level, kill_proc, kill_app,
            draw_frames):

    logger = get_logger(log_que, log_level)

    device = cmd_args.camera_url if cmd_args.camera_url != '' else cmd_args.camera_index
    REQUIRED_FPS = cmd_args.fps
    CAMERA_WAIT = cmd_args.camera_wait
    img_dim = (cmd_args.img_width, cmd_args.img_height)
    NUM_FRAME_TO_SKIP = 2

    logger.info('Acquiring camera. Please wait...')
    sleep(CAMERA_WAIT)
    factor = cmd_args.img_red_factor
    cap = cv2.VideoCapture(device)
    logger.info('Camera acquired')
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, img_dim[0])
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, img_dim[1])
    logger.info("Capturing Images with dimension: {}".format(img_dim))

    def exit_gracefully(signum, frame):
        kill_app.value = 1
        logger.warning('Terminating camera process due to kill signal')
        cap.release()
        cv2.destroyAllWindows()
        utils.clean_queue(out_queue)

    signal.signal(signal.SIGINT, exit_gracefully)
    signal.signal(signal.SIGTERM, exit_gracefully)

    skip_count = 0
    tik = time()
    count = 0

    if cap.isOpened():
        logger.info('Camera opened')
    else:
        logger.error('Unable to open camera')

    while cap.isOpened():
        if kill_proc.value > 0 or kill_app.value > 0:
            logger.warning('Breaking camera process loop')
            break

        ret, frame = cap.read()
        tok = time()
        count += 1

        if (tok - tik) > 2.0:
            tik = time()
            camera_fps = math.ceil(count / 2)
            NUM_FRAME_TO_SKIP = math.ceil(
                (camera_fps - REQUIRED_FPS) / REQUIRED_FPS)
            count = 0

        if ret is True:
            cv2.flip(frame, 1, frame)
            if skip_count >= NUM_FRAME_TO_SKIP:
                frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                red_frame_rgb = cv2.resize(frame_rgb, (int(
                    frame.shape[1] * factor), int(frame.shape[0] * factor)))
                out_queue.put(
                    {
                        'cap_time': time(),
                        'raw_frame': frame,
                        'small_rgb_frame': red_frame_rgb,
                        'factor': factor
                    },
                    block=True,
                    timeout=5)
                skip_count = 0

                if draw_frames:
                    logger.info(
                        "Required frame size {}. Captured size {}".format(
                            img_dim, frame.shape))
                    cv2.imshow('CameraFeed', frame)

                    if cv2.waitKey(25) & 0xFF == ord('q'):
                        break
            else:
                skip_count += 1

        else:
            break

    kill_app.value = 1
    cap.release()
    utils.clean_queue(out_queue)
    cv2.destroyAllWindows()
    logger.info('Exiting from Camera Process')