def __init__(self, histo=None, ff_name=None, ff_dict=forms, weighted=False, min_npts=10, normalize=True) : """specify the histogram and functional form to use for initialization, or none""" self.fits = {} self.default_fit = None self.ff_name = ff_name if ff_name is not None : self._init_ff(ff_dict[ff_name]) if histo is not None : self.minmax = histo.minmax self._index = ah.init_indexers(self.minmax) self.default_contrib = histo.default_contrib combos = histo.get_combos(units=False) self.x_min = {} for c in combos : self.x_min[c] = np.mean(histo.get_edges(c, units=False)[:2]) self.default_x_min = np.mean(histo.default_edges[:2]) self._fit_functional_form(histo, weighted, min_npts, normalize) seed(self) else: self.default_contrib = {}
def sparse_multiyear_histogram(years, csv_template, bahistfile, count_threshold=50, bins=25, out_template=None) : """computes and optionally saves sparse histograms of MODIS BA counts""" # open the ba histogram file bahist = nc.Dataset(bahistfile) counts = bahist.variables['burned_total'] # read all csv files and concatenate file_list = [] for y in years : file_list.append(pd.read_csv(csv_template % y)) compare = pd.concat(file_list) compare = compare[ np.logical_and(compare.icol(0)>=10,compare.icol(0)<364) ] # get min/max/bin from multiyear histogram file mmb, binsizes = read_multiyear_minmax(bahist,counts.dimensions) # create an indexer index = ah.init_indexers(mmb) # strip out geometry dim_bins = [m[2] for m in mmb] # create sparse histograms shisto_forest = ah.SparseKeyedHistogram(minmax=mmb, threshold=count_threshold, bins=bins, default_minmax=(1,count_threshold,count_threshold-1)) shisto_not_forest = ah.SparseKeyedHistogram(minmax=mmb, threshold=count_threshold, bins=bins, default_minmax=(1,count_threshold,count_threshold-1)) shisto_total = ah.SparseKeyedHistogram(minmax=mmb, threshold=count_threshold, bins=bins, default_minmax=(1,count_threshold,count_threshold-1)) # loop through all bins with nonzero data i_nonzero = np.where( counts[:]>0 ) for i_bin in zip(*i_nonzero) : total = select_data(compare, counts.dimensions, i_bin, index, dim_bins) forest = total[ total.ix[:,1].isin(FOREST_LC) ] not_forest = total [ total.ix[:,1].isin(NONFOREST_LC) ] shisto_forest.put_combo(i_bin, forest['BA Count'], units=False) shisto_not_forest.put_combo(i_bin, not_forest["BA Count"], units=False) shisto_total.put_combo(i_bin, total['BA Count'], units=False) # save file if filename template specified if out_template is not None : ah.save_sparse_histos(shisto_total, out_template%'total') ah.save_sparse_histos(shisto_forest, out_template%'forest') ah.save_sparse_histos(shisto_not_forest, out_template%'not_forest') bahist.close() return (shisto_total, shisto_forest, shisto_not_forest)