Esempio n. 1
0
def main():
    """
    Program execution with picture directory parameters
    """
    if (len(sys.argv) != 2):
        print("The App arg is invalid")
        exit(1)
    acl_resource = AclResource()
    acl_resource.init()
    #Instantiation classification detection, incoming om model path, model input width and height parameters
    classify = Classify(acl_resource, MODEL_PATH, MODEL_WIDTH, MODEL_HEIGHT)

    #Get the picture storage directory from the parameters, and infer picture by picture
    image_dir = sys.argv[1]
    images_list = [
        os.path.join(image_dir, img) for img in os.listdir(image_dir)
        if os.path.splitext(img)[1] in IMG_EXT
    ]

    #Create a directory and save the infer results
    if not os.path.isdir(os.path.join(SRC_PATH, "../outputs")):
        os.mkdir(os.path.join(SRC_PATH, "../outputs"))

    for image_file in images_list:
        #read the picture
        image = AclImage(image_file)
        image_dvpp = image.copy_to_dvpp()
        #preprocess image
        resized_image = classify.pre_process(image_dvpp)
        print("pre process end")
        #inference
        result = classify.inference(resized_image)
        #post process
        classify.post_process(result, image_file)
Esempio n. 2
0
def main():
    """
    Program execution with picture directory parameters
    """
    if (len(sys.argv) != 2):
        print("The App arg is invalid")
        exit(1)

    acl_resource = AclResource()
    acl_resource.init()
    #Instance classification detection, pass into the OM model storage path, model input width and height parameters
    classify = Classify(acl_resource, MODEL_PATH, MODEL_WIDTH, MODEL_HEIGHT)

    #From the parameters of the picture storage directory, reasoning by a picture
    image_dir = sys.argv[1]
    images_list = [
        os.path.join(image_dir, img) for img in os.listdir(image_dir)
        if os.path.splitext(img)[1] in IMG_EXT
    ]

    #Create a directory to store the inference results
    if not os.path.isdir('../outputs'):
        os.mkdir('../outputs')

    resized_image_list = []
    batch_image_files = []
    num = 0
    batch_amount = len(images_list) // BATCH
    left = len(images_list) % BATCH

    for image_file in images_list:
        num += 1
        #Read the pictures
        image = AclImage(image_file)
        image_dvpp = image.copy_to_dvpp()
        #preprocess image
        resized_image = classify.pre_process(image_dvpp)
        print("pre process end")

        batch_image_files.append(image_file)
        resized_image_list.append(resized_image)
        if batch_amount > 0:
            #Each set of BATCH pictures, reasoning and post-processing
            if num == BATCH:
                #Reasoning pictures
                result = classify.inference(resized_image_list, BATCH)
                #process inference results
                classify.post_process(result, batch_image_files, BATCH)
                batch_amount -= 1
                num = 0
                batch_image_files = []
                resized_image_list = []
        else:
            #remaining images are inferred and post-processed
            if num == left:
                #Reasoning pictures
                result = classify.inference(resized_image_list, BATCH)
                #The inference results are processed
                classify.post_process(result, batch_image_files, left)
Esempio n. 3
0
def main():
    if (len(sys.argv) != 2):
        print("The App arg is invalid")
        exit(1)

    classify = Classify(MODEL_PATH, MODEL_WIDTH, MODEL_HEIGHT)
    ret = classify.init()

    if not os.path.isdir(os.path.join(SRC_PATH, "../outputs")):
        os.mkdir(os.path.join(SRC_PATH, "../outputs"))

    image_dir = sys.argv[1]
    images_list = [
        os.path.join(image_dir, img) for img in os.listdir(image_dir)
        if os.path.splitext(img)[1] in IMG_EXT
    ]

    for image_file in images_list:
        image = AclImage(image_file)
        resized_image = classify.pre_process(image)
        print("pre process end")

        result = classify.inference(resized_image)
        result_img_encode = classify.post_process(result, image_file)
    return result_img_encode
Esempio n. 4
0
def main_process():
    classify = Classify(MODEL_PATH, MODEL_WIDTH, MODEL_HEIGHT)
    ret = classify.init()

    if not os.path.isdir('./outputs'):
        os.mkdir('./outputs')

    image_dir = "./origin"
    images_list = [
        os.path.join(image_dir, img) for img in os.listdir(image_dir)
        if os.path.splitext(img)[1] in IMG_EXT
    ]

    for image_file in images_list:

        image = AclImage(image_file)
        resized_image = classify.pre_process(image)
        print("pre process end")

        result = classify.inference(resized_image)
        result_img_encode = classify.post_process(result, image_file)

        #acl_resource.destroy()
        #classify.destroy()
        return result_img_encode
Esempio n. 5
0
def main():
    # check param
    if (len(sys.argv) != 2):
        print("The App arg is invalid")
        exit(1)
    
    # instantiation Cartoonization object
    cartoonization = Cartoonization(MODEL_PATH, MODEL_WIDTH, MODEL_HEIGHT)
    # init
    ret = cartoonization.init()
    check_ret("Cartoonization.init ", ret)
    
    # get all pictures
    image_dir = sys.argv[1]
    images_list = [os.path.join(image_dir, img)
                   for img in os.listdir(image_dir)
                   if os.path.splitext(img)[1] in IMG_EXT]
    
    # create dir to save result
    if not os.path.isdir('../outputs'):
        os.mkdir('../outputs')

    for image_file in images_list:
        # read image
        image = AclImage(image_file)
        # preprocess
        crop_and_paste_image = cartoonization.pre_process(image)
        print("[Sample] pre process end")
        # inference
        result = cartoonization.inference(crop_and_paste_image)
        # postprocess
        cartoonization.post_process(result, image_file, image)
Esempio n. 6
0
    def jpegd(self, image):
        '''
        :param image: input image
        :return: AclImage
        '''
        print('[Dvpp] jpeg decode stage:')
        print("[Dvpp] jpeg width %d, height %d, size %d" % (image.width, image.height, image.size), \
                 " data ", image.data())
        output_desc, out_buffer = self._gen_jpegd_out_pic_desc(image)
        image_dvpp = image.copy_to_dvpp(self._run_mode)
        ret = acl.media.dvpp_jpeg_decode_async(self._dvpp_channel_desc,
                                               image_dvpp.data(),
                                               image_dvpp.size, output_desc,
                                               self._stream)
        if ret != ACL_ERROR_NONE:
            print("dvpp_jpeg_decode_async failed ret={}".format(ret))
            return None

        ret = acl.rt.synchronize_stream(self._stream)
        if ret != ACL_ERROR_NONE:
            print("dvpp_jpeg_decode_async failed ret={}".format(ret))
            return None

        width = align_up128(image.width)
        height = align_up16(image.height)
        return AclImage(out_buffer, width, height,
                        yuv420sp_size(width, height), MEMORY_DVPP)
Esempio n. 7
0
 def crop_and_paste(self, image, width, height, crop_and_paste_width,
                    crop_and_paste_height):
     '''
     :image: input image
     :width: input image width 
     :height: input image height 
     :crop_and_paste_width: crop_and_paste_width
     :crop_and_paste_height: crop_and_paste_height
     :return: return AclImage
     '''
     print('[Dvpp] vpc crop and paste stage:')
     input_desc = self._gen_input_pic_desc(image)
     output_desc, out_buffer, out_buffer_size = \
         self._gen_resize_out_pic_desc(crop_and_paste_width, crop_and_paste_height)
     self._crop_config = acl.media.dvpp_create_roi_config(
         0, (width >> 1 << 1) - 1, 0, (height >> 1 << 1) - 1)
     self._paste_config = acl.media.dvpp_create_roi_config(
         0, crop_and_paste_width - 1, 0, crop_and_paste_height - 1)
     ret = acl.media.dvpp_vpc_crop_and_paste_async(self._dvpp_channel_desc,
                                                   input_desc, output_desc,
                                                   self._crop_config,
                                                   self._paste_config,
                                                   self._stream)
     check_ret("acl.media.dvpp_vpc_crop_and_paste_async", ret)
     ret = acl.rt.synchronize_stream(self._stream)
     check_ret("acl.rt.synchronize_stream", ret)
     print('[Dvpp] vpc crop and paste stage success')
     stride_width = align_up16(crop_and_paste_width)
     stride_height = align_up2(crop_and_paste_height)
     return AclImage(out_buffer, stride_width, stride_height,
                     out_buffer_size, MEMORY_DVPP)
Esempio n. 8
0
    def read(self):
        frame_data = CameraOutputC()
        ret = libatlas.ReadCameraFrame(self._id, byref(frame_data))
        if (ret != CAMERA_OK):
            print("ERROR:Read camera %d failed" % (self._id))
            return None

        return AclImage(addressof(frame_data.data.contents), self._width,
                        self._height, self._size, MEMORY_DVPP)
Esempio n. 9
0
    def read(self):
        frame = ImageDataC()
        image = None
        ret = libatlas.ReadDecodedFrame(self._channel_id, byref(frame))
        if ret == READ_VIDEO_OK:
            image = AclImage(addressof(frame.data.contents), frame.width,
                             frame.height, frame.size, MEMORY_DVPP)
        elif ret == VIDEO_DECODE_FINISH:
            log_info("Video has been read finished")
        else:
            log_error("Read frame error: ", ret)

        return ret, image
Esempio n. 10
0
    def resize(self, image, resize_width, resize_height):
        print('[Dvpp] vpc resize stage:')
        input_desc = self._gen_input_pic_desc(image)
        output_desc, out_buffer, out_buffer_size = \
            self._gen_resize_out_pic_desc(resize_width, resize_height)
        ret = acl.media.dvpp_vpc_resize_async(self._dvpp_channel_desc,
                                              input_desc, output_desc,
                                              self._resize_config,
                                              self._stream)
        check_ret("acl.media.dvpp_vpc_resize_async", ret)
        ret = acl.rt.synchronize_stream(self._stream)
        check_ret("acl.rt.synchronize_stream", ret)
        print('[Dvpp] vpc resize stage success')

        stride_width = align_up16(image.width)
        stride_height = align_up2(image.height)
        return AclImage(out_buffer, stride_width, stride_height,
                        out_buffer_size, MEMORY_DVPP)
Esempio n. 11
0
    def jpege(self, image, width_align=128, height_align=16):
        '''
        yuv420sp to jpeg
        :param image: input image
        :param width_align: width align
        :param height_align: height align
        :return: AclImage
        '''
        # create input image desc
        input_desc = self._gen_input_pic_desc(image, width_align, height_align)

        output_size, ret = acl.media.dvpp_jpeg_predict_enc_size(
            input_desc, self._jpege_config)
        if (ret != ACL_ERROR_NONE):
            print("Predict jpege output size failed")
            return None

        output_buffer, ret = acl.media.dvpp_malloc(output_size)
        if (ret != ACL_ERROR_NONE):
            print("Malloc jpege output memory failed")
            return None

        output_size_array = np.array([output_size], dtype=np.int32)
        output_size_ptr = acl.util.numpy_to_ptr(output_size_array)

        ret = acl.media.dvpp_jpeg_encode_async(self._dvpp_channel_desc,
                                               input_desc, output_buffer,
                                               output_size_ptr,
                                               self._jpege_config,
                                               self._stream)
        if (ret != ACL_ERROR_NONE):
            print("Jpege failed, ret ", ret)
            return None

        ret = acl.rt.synchronize_stream(self._stream)
        if (ret != ACL_ERROR_NONE):
            print("Jpege synchronize stream failed, ret ", ret)
            return None

        # release resources
        acl.media.dvpp_destroy_pic_desc(input_desc)

        return AclImage(output_buffer, image.width, image.height,
                        int(output_size_array[0]), MEMORY_DVPP)
Esempio n. 12
0
    def jpegd(self, image):
        print('[Dvpp] vpc decode stage:')
        device_image = image.copy_to_device(self._run_mode)
        output_desc, out_buffer = self._gen_jpegd_out_pic_desc(image)
        ret = acl.media.dvpp_jpeg_decode_async(self._dvpp_channel_desc,
                                               device_image.data(), image.size,
                                               output_desc, self._stream)
        if ret != ACL_ERROR_NONE:
            print("dvpp_jpeg_decode_async failed ret={}".format(ret))
            return None

        ret = acl.rt.synchronize_stream(self._stream)
        if ret != ACL_ERROR_NONE:
            print("dvpp_jpeg_decode_async failed ret={}".format(ret))
            return None

        width = align_up128(image.width)
        height = align_up16(image.height)
        return AclImage(out_buffer, width, height,
                        yuv420sp_size(width, height), MEMORY_DVPP)