Esempio n. 1
0
 def setUp(self):
     vs = [Vertex(0, 0), Vertex(1, 0), Vertex(1, 1), Vertex(0, 1)]
     self.polygon = polygon_to_array([
         Edge(vs[0], vs[1]),
         Edge(vs[1], vs[2]),
         Edge(vs[3], vs[2]),
         Edge(vs[0], vs[3])
     ])
Esempio n. 2
0
 def setUp(self):
     vs = [Vertex(0, 0), Vertex(1, 0), Vertex(1, 1), Vertex(0, 1)]
     self.polygon = polygon_to_array([
         Edge(vs[0], vs[1]),
         Edge(vs[1], vs[2]),
         Edge(vs[3], vs[2]),
         Edge(vs[0], vs[3])
     ])
Esempio n. 3
0
 def _score(self, polygon, data):
     edges = polygon_to_array(polygon)
     if self.config.gpu:
         cost = cost_function_gpu(data, edges)
     else:
         cost = cost_function(data, edges)
     # try:
     length_factor = 1 / polygon_length(polygon)
     return (cost**self.config.alpha) * (length_factor**self.config.beta)
Esempio n. 4
0
 def _score(self, polygon, data):
     edges = polygon_to_array(polygon)
     if self.config.gpu:
         cost = cost_function_gpu(data, edges)
     else:
         cost = cost_function(data, edges)
     # try:
     length_factor = 1 / polygon_length(polygon)
     return (cost ** self.config.alpha) * (length_factor ** self.config.beta)
Esempio n. 5
0
    def increase_section_granularity(self, section, best_polygon=None):
        p_inside = points_inside(self.data, polygon_to_array(section))

        if not all_points_have_same_position(
                p_inside) and have_points_of_both_classes(p_inside):
            new_edges = []
            remove_edges = []

            # Cut edges in two
            for edge in section:
                v_mid = Vertex(((edge.a.x + edge.b.x) / 2),
                               ((edge.a.y + edge.b.y) / 2))
                if v_mid not in self.vertices:
                    self.vertices.append(v_mid)
                else:
                    v_mid = next(v for v in self.vertices if v == v_mid)
                new_edges.extend([
                    Edge(edge.a, v_mid, edge.pheromone_strength),
                    Edge(v_mid, edge.b, edge.pheromone_strength)
                ])
                if best_polygon:
                    if edge in best_polygon:
                        best_polygon.remove(edge)
                        best_polygon.extend(new_edges[-2:])

            remove_edges.extend(section)
            connect_edges_to_vertices(new_edges)
            v_lower_left = section[0].a
            v_down = v_lower_left.connected_edges[DIRECTION['RIGHT']].b
            v_right = v_down.connected_edges[
                DIRECTION['RIGHT']].b.connected_edges[DIRECTION['UP']].b
            v_left = v_lower_left.connected_edges[DIRECTION['UP']].b
            v_up = v_left.connected_edges[DIRECTION['UP']].b.connected_edges[
                DIRECTION['RIGHT']].b
            v_center = Vertex(v_down.x, v_left.y)

            new_edges.extend([
                Edge(v_down, v_center, pheromone_strength=self.tau_initial),
                Edge(v_left, v_center, pheromone_strength=self.tau_initial),
                Edge(v_center, v_right, pheromone_strength=self.tau_initial),
                Edge(v_center, v_up, pheromone_strength=self.tau_initial)
            ])
            self.vertices.append(v_center)
            connect_edges_to_vertices(new_edges)

            corners = [v_lower_left, v_down, v_left, v_center]

            subsections = []
            for c in corners:
                subsections.append([
                    c.connected_edges[DIRECTION['RIGHT']], c.connected_edges[
                        DIRECTION['RIGHT']].b.connected_edges[DIRECTION['UP']],
                    c.connected_edges[DIRECTION['UP']].b.connected_edges[
                        DIRECTION['RIGHT']], c.connected_edges[DIRECTION['UP']]
                ])
            return subsections, new_edges, remove_edges
Esempio n. 6
0
    def increase_section_granularity(self, section, best_polygon=None):
        p_inside = points_inside(self.data, polygon_to_array(section))

        if not all_points_have_same_position(p_inside) and have_points_of_both_classes(p_inside):
            new_edges = []
            remove_edges = []

            # Cut edges in two
            for edge in section:
                v_mid = Vertex(((edge.a.x + edge.b.x) / 2), ((edge.a.y + edge.b.y) / 2))
                if v_mid not in self.vertices:
                    self.vertices.append(v_mid)
                else:
                    v_mid = next(v for v in self.vertices if v == v_mid)
                new_edges.extend([Edge(edge.a, v_mid, edge.pheromone_strength),
                                  Edge(v_mid, edge.b, edge.pheromone_strength)])
                if best_polygon:
                    if edge in best_polygon:
                        best_polygon.remove(edge)
                        best_polygon.extend(new_edges[-2:])

            remove_edges.extend(section)
            connect_edges_to_vertices(new_edges)
            v_lower_left = section[0].a
            v_down = v_lower_left.connected_edges[DIRECTION['RIGHT']].b
            v_right = v_down.connected_edges[DIRECTION['RIGHT']].b.connected_edges[DIRECTION['UP']].b
            v_left = v_lower_left.connected_edges[DIRECTION['UP']].b
            v_up = v_left.connected_edges[DIRECTION['UP']].b.connected_edges[DIRECTION['RIGHT']].b
            v_center = Vertex(v_down.x, v_left.y)

            new_edges.extend([Edge(v_down, v_center, pheromone_strength=self.tau_initial),
                               Edge(v_left, v_center, pheromone_strength=self.tau_initial),
                               Edge(v_center, v_right, pheromone_strength=self.tau_initial),
                               Edge(v_center, v_up, pheromone_strength=self.tau_initial)])
            self.vertices.append(v_center)
            connect_edges_to_vertices(new_edges)

            corners = [v_lower_left,
                       v_down,
                       v_left,
                       v_center]

            subsections = []
            for c in corners:
                subsections.append([
                    c.connected_edges[DIRECTION['RIGHT']],
                    c.connected_edges[DIRECTION['RIGHT']].b.connected_edges[DIRECTION['UP']],
                    c.connected_edges[DIRECTION['UP']].b.connected_edges[DIRECTION['RIGHT']],
                    c.connected_edges[DIRECTION['UP']]
                ])
            return subsections, new_edges, remove_edges
Esempio n. 7
0
    def evaluate(self, test_data):
        if len(self.model) == 0:
            raise RuntimeError('PolyACO must be trained before evaluation')
        inside = np.empty((len(self.planes), len(self.class_indices), test_data.shape[0]), dtype=bool)
        for i, plane in enumerate(self.model):
            plane_data = np.take(test_data, list(self.planes[i]), axis=1)
            for j, poly in enumerate(plane):
                inside[i, j, :] = is_points_inside_cuda(plane_data, polygon_to_array(poly))

        aggregated_scores = np.mean(inside, axis=0)
        predictions = np.empty((test_data.shape[0]), dtype=int)
        max_elements = np.argmax(aggregated_scores, axis=0)
        for i in range(test_data.shape[0]):
            predictions[i] = self.class_indices[max_elements[i]]
        return predictions
Esempio n. 8
0
    def evaluate(self, test_data):
        if len(self.model) == 0:
            raise RuntimeError('PolyACO must be trained before evaluation')
        inside = np.empty(
            (len(self.planes), len(self.class_indices), test_data.shape[0]),
            dtype=bool)
        for i, plane in enumerate(self.model):
            plane_data = np.take(test_data, list(self.planes[i]), axis=1)
            for j, poly in enumerate(plane):
                inside[i,
                       j, :] = is_points_inside_cuda(plane_data,
                                                     polygon_to_array(poly))

        aggregated_scores = np.mean(inside, axis=0)
        predictions = np.empty((test_data.shape[0]), dtype=int)
        max_elements = np.argmax(aggregated_scores, axis=0)
        for i in range(test_data.shape[0]):
            predictions[i] = self.class_indices[max_elements[i]]
        return predictions