def predict2tmp(self): old_code = "" dl, ol, hl, ll, cl, vl = ([], [], [], [], [], []) kabuka_generator = kf.g_get_kabuka(self.meigaras, self.startd, self.endd) for line in kabuka_generator: (code, date, open, high, low, close, volume) = line if code != old_code and old_code != "": if self.chart_prg == "gen_bollinger_field": tpl = gen_pf_bollinger(dl, ol, hl, ll, cl, vl) if self.chart_prg == "gen_pnf_field": tpl = gen_pf_pnf(dl, ol, hl, ll, cl, vl) if self.chart_prg == "gen_ichimoku_field": tpl = gen_pf_ichimoku(dl, hl, ll, cl) if len(tpl) > 0: (d, sz, X, yma, ymi) = tpl else: old_code = code continue if len(X) > 0: labels = np.array(self.classifier.predict(X)) else: continue data = [] for i in range(len(d)): data.append([old_code, d[i], "", labels[i], sz[i], yma[i], ymi[i]]) if len(data) > 0: tbl.arr2table(data, self.table_name) data = [] dl, ol, hl, ll, cl, vl = ([], [], [], [], [], []) dl.append(date) ol.append(open) hl.append(high) ll.append(low) cl.append(close) vl.append(volume) old_code = code
def learn(self): old_code = "" dl, ol, hl, ll, cl, vl = ([], [], [], [], [], []) X = [] kabuka_generator = kf.g_get_kabuka(self.meigaras, self.startd, self.endd) for line in kabuka_generator: (code, date, open, high, low, close, volume) = line if code != old_code and old_code != "": if self.chart_prg == "gen_bollinger_field": tpl = gen_pf_bollinger(dl, ol, hl, ll, cl, vl, False) if self.chart_prg == "gen_pnf_field": tpl = gen_pf_pnf(dl, ol, hl, ll, cl, vl, False) if self.chart_prg == "gen_ichimoku_field": tpl = gen_pf_ichimoku(dl, hl, ll, cl) if len(tpl) > 0: (d, sz, xx) = tpl else: old_code = code continue debug = False if debug: labels = self.classifier.predict(xx) X.extend(xx) dl, ol, hl, ll, cl, vl = ([], [], [], [], [], []) dl.append(date) ol.append(open) hl.append(high) ll.append(low) cl.append(close) vl.append(volume) old_code = code self.classifier.fit(X) self.classifier.save()