Esempio n. 1
0
 def cost(ctrl):
     ctrl = np.array(ctrl)
     ctrl = np.reshape(ctrl, ((len(ctrl) / 2), 2))
     spline.set_ctrl_pts(ctrl, only_free=True)
     if img is None:
         ret = compute_energy_internal_total(spline=spline, nbr_dct=1000)
     else:
         ret = compute_energy_internal_total(spline=spline,
                                             nbr_dct=1000) + \
                 gamma * compute_energy_external_total(spline=spline,
                                                       img=img,
                                                       nbr_dct=1000)
     return ret
Esempio n. 2
0
    def cost(ctrl_pts):
        '''
        Compute the total energy given the new control points. It acts as the
        cost function of the optimisation.

        Parameters
        ----------
        ctrl_pts : numpy.ndarray
            The flattened vector of control points

        Returns
        -------
        ret: float
            The total energy corresponding to the given control points.

        '''
        ctrl_pts = np.array(ctrl_pts)
        ctrl_pts = np.reshape(ctrl_pts, ((len(ctrl_pts) / 2), 2))
        spline.set_ctrl_pts(ctrl_pts, only_free=True)
        ret = compute_energy_internal_total(spline=spline,
                                            ba_ratio=ba_ratio,
                                            nbr_dct=nbr) + \
            gamma * compute_energy_external_total(spline=spline,
                                                  img=img,
                                                  nbr_dct=nbr,
                                                  normalized=True)

        return ret
Esempio n. 3
0
    def cost(ctrl):
        ctrl = np.array(ctrl)
        ctrl = np.reshape(ctrl, ((len(ctrl) / 2), 2))
        spline.set_ctrl_pts(ctrl, only_free=True)

        return compute_energy_external_total(spline=spline, img=img,
                                             nbr_dct=10000,
                                             normalized=True) + \
            compute_energy_internal_total(spline=spline, nbr_dct=10000)
Esempio n. 4
0
    def cost(ctrl_pts):
        '''
        Compute the total energy given the new control points. It is the cost
        function of the optimisation. It also helps to compute the traditional
        jacobian.

        Parameters
        ----------
        ctrl_pts : numpy.ndarray
            The flattened vector of control points

        Returns
        -------
        ret: float
            The total energy corresponding to the given control points.If
            img=None, it returns the partial internal energy. If not, it
            returns the partial total (internal + external) energy.

        '''
        ctrl_pts = np.array(ctrl_pts)
        ctrl_pts = np.reshape(ctrl_pts, ((len(ctrl_pts) / 2), 2))
        spline.set_ctrl_pts(ctrl_pts, only_free=True)

        if img is None:
            ret = compute_energy_internal_total(spline=spline,
                                                ba_ratio=ba_ratio,
                                                nbr_dct=nbr)
        else:
            ret = compute_energy_internal_total(spline=spline,
                                                ba_ratio=ba_ratio,
                                                nbr_dct=nbr) + \
                    gamma * compute_energy_external_total(spline=spline,
                                                          img=img,
                                                          nbr_dct=nbr,
                                                          normalized=True)

        return ret
Esempio n. 5
0
def changement_rayon_total():
    # How the total energy changes with respect to the radius given that we
    # know the optimal radius
    n_dct = 1000
    img, _ = create_image(30)
    R = np.linspace(20, 40, 1000)
    e_ext = np.zeros(1000)
    e_int = np.zeros(1000)
    e_total = np.zeros(1000)
    dict = {}
    gamma = 50
    for i, data in enumerate(R):
        spl = spline_initialize(data)
        e_int[i] = compute_energy_internal_total(spline=spl, ba_ratio=400,
                                                 nbr_dct=n_dct)
        e_ext[i] = compute_energy_external_total(spl, img, n_dct)
        e_total[i] = e_int[i] + gamma * e_ext[i]
        dict[data] = e_total[i]
    print min(dict.iteritems(), key=operator.itemgetter(1))[0]
    fig = plt.figure()
    fig.canvas.set_window_title("Rayon")
    ax = fig.add_subplot(111)
    ax1 = fig.add_subplot(311)
    ax2 = fig.add_subplot(312)
    ax3 = fig.add_subplot(313)
    ax1.title.set_text('Le changement avec gamma = ' + str(gamma))

    ax1.plot(R, e_int, 'r', label='Energie interne')
    ax1.legend(fontsize='large')
    ax2.plot(R, e_ext, 'g', label='Energie externe')
    ax2.legend(fontsize='large')
    ax3.plot(R, e_total, 'b', label='Energie totale')
    ax3.legend(fontsize='large')

    ax.spines['top'].set_color('none')
    ax.spines['bottom'].set_color('none')
    ax.spines['left'].set_color('none')
    ax.spines['right'].set_color('none')
    ax.tick_params(labelcolor='w', top='off', bottom='off', left='off',
                   right='off')
    ax.set_xlabel('Rayon')
    ax.set_ylabel("Energie")
    plt.show()
def compute_internal():
    st = timeit.default_timer()
    for i in range(50):
        compute_energy_internal_total(initialize(50))
    ed = timeit.default_timer()
    print ed - st