def test_single_variable_trig_hyperbolic_2(): x = ad.Variable() # x^2 Cosh[Sin[x] + Tanh[Exp[3 * x] + Log[x]]] g = ad.Sin(x) + ad.Tanh(ad.Exp(3 * x) + ad.Log(x)) f = x * x * ad.Cosh(g) assert (equals(f.hessian({x: 1}), 11.464317742)) assert (equals(f.hessian({x: 2}), -13.704377252))
def test_trig_multivar_hessian_2(): x, y, z = ad.Variable(), ad.Variable(), ad.Variable() f = ad.Sinh(x * y) + (x + y) * (z**2) * ad.Cosh(z * ad.Tanh(1 / z)) h = f.hessian({x: 1, y: 2, z: 3}) assert (equals(h[x][x], 14.50744163138)) assert (equals(h[y][y], 3.6268604078)) assert (equals(h[z][z], 9.3022279093)) assert (equals(h[x][y], 11.015916506)) assert (equals(h[y][z], 9.2426242912)) assert (equals(h[x][z], 9.2426242912))
def test_hyperbolic_expressions(): x = ad.Variable('x') y = ad.Variable('y') f1 = ad.Tan(x) f2 = ad.Sinh(x) f3 = ad.Cosh(x) f4 = ad.Tanh(x) f5 = ad.Exp(x) f6 = ad.Cos(x) assert f1._d_expr(y).eval({x:1}) == 0 assert np.isclose(f1._d_expr(x).eval({x:1}), f1.d({x: 1})) assert f2._d_expr(y).eval({x:1}) == 0 assert np.isclose(f2._d_expr(x).eval({x:1}), f2.d({x: 1})) assert f3._d_expr(y).eval({x:1}) == 0 assert np.isclose(f3._d_expr(x).eval({x:1}), f3.d({x: 1})) assert f4._d_expr(y).eval({x:1}) == 0 assert np.isclose(f4._d_expr(x).eval({x:1}), f4.d({x: 1})) assert f5._d_expr(y).eval({x:1}) == 0 assert np.isclose(f5._d_expr(x).eval({x:1}), f5.d({x: 1})) assert f6._d_expr(y).eval({x:1}) == 0 assert np.isclose(f6._d_expr(x).eval({x:1}), f6.d({x: 1}))
def test_single_variable_trig_hyperbolic(): x = ad.Variable() f = x * x * ad.Cosh(0.01 * x + 0.1) + x * ad.Sinh(x * x - 4.0) assert (equals(f.hessian({x: 1}), 22.351093955)) assert (equals(f.hessian({x: 2}), 14.02444322)) assert (equals(f.hessian({x: 3}), 9351.7592912))
def test_cosh_expression(): a = ad.Variable('a') b = ad.Cosh(a) assert np.isclose(b.eval({a: pi/4}), 1.3246090892520057) assert np.isclose(b.d({a: pi/4}), 0.8686709614860095)