def test_single_variable_trig_sin(): """analytic hessian is -25 sin (5 * x + 3)""" x = ad.Variable() f = ad.Sin(5 * x + 3) assert (equals(f.hessian({x: 1}), -25 * np.sin(5 * 1 + 3))) assert (equals(f.hessian({x: 2}), -25 * np.sin(5 * 2 + 3))) assert (equals(f.hessian({x: 3}), -25 * np.sin(5 * 3 + 3)))
def test_single_variable_trig_hyperbolic_2(): x = ad.Variable() # x^2 Cosh[Sin[x] + Tanh[Exp[3 * x] + Log[x]]] g = ad.Sin(x) + ad.Tanh(ad.Exp(3 * x) + ad.Log(x)) f = x * x * ad.Cosh(g) assert (equals(f.hessian({x: 1}), 11.464317742)) assert (equals(f.hessian({x: 2}), -13.704377252))
def test_sine(): x = ad.Variable("x") y = ad.Sin(x) yd1 = y.d_expr() assert np.isclose(yd1.eval({x: pi / 2}), 0.0) assert np.isclose(yd1.eval({x: 0.0}), 1.0) assert np.isclose(yd1.d({x: 0.0}), 0.0)
def test_logexp_multivar_hessian_2(): x, y, z = ad.Variable(), ad.Variable(), ad.Variable() f = ad.Sinh(ad.Exp(x - 3.0) * y) + ad.Log(y + x**2) * z * ad.Sin(x) h = f.hessian({x: 1, y: 3, z: 5}) assert (equals(h[x][x], -1.5705707143)) assert (equals(h[y][y], -0.2553174360)) assert (equals(h[z][z], 0)) assert (equals(h[x][y], 0.31902899408)) assert (equals(h[y][z], 0.2103677462)) assert (equals(h[x][z], 1.1697535323))
def test_trig_multivar_hessian_1(): x, y, z = ad.Variable(), ad.Variable(), ad.Variable() f = ad.Sin(x * y) + z * ad.Cos(z * ad.Tan(1 / z)) h = f.hessian({x: 1, y: 3, z: 5}) assert (equals(h[x][x], -1.2700800725)) assert (equals(h[y][y], -0.14112000805)) assert (equals(h[z][z], -0.0050593837)) assert (equals(h[x][y], -1.41335252)) assert (equals(h[y][z], 0)) assert (equals(h[x][z], 0))
def test_exp_exceptions(): x = ad.Variable('x') y = ad.Exp(x) z = ad.Cos(x) a = ad.Log(x) b = ad.Sin(x) f1 = y*2 + y f2 = z*2 + z f3 = a*2 + a f4 = b*2 + b assert np.isclose(f1.d_n(1, 1), 8.154845485377136) assert np.isclose(f2.d_n(1, 1), -2.5244129544236893) assert np.isclose(f3.d_n(1, 1), 3.0) assert np.isclose(f4.d_n(1, 1), 1.6209069176044193)
def test_variable_inheritance_three(): x = ad.Variable() y = ad.Variable() z = ad.Variable() f = ad.Cos(x) * y g = ad.Sin(f) + z * z * ad.Log(z) + 1 assert (x in f.dep_vars) assert (y in f.dep_vars) assert (len(f.dep_vars) == 2) assert (y not in x.dep_vars) assert (x not in y.dep_vars) assert (len(g.dep_vars) == 3) assert (x in g.dep_vars) assert (y in g.dep_vars) assert (z in g.dep_vars) assert (z not in f.dep_vars)
def test_inverse_trig_exceptions(): x = ad.Variable('x') y = ad.Variable('y') f5 = ad.Arccos(x) f6 = ad.Arcsin(x) f7 = ad.Arctan(x) f8 = ad.Log(x) f9 = ad.Sin(x) assert f5._d_expr(y).eval({x:0}) == 0 assert np.isclose(f5._d_expr(x).eval({x:0.5}), f5.d({x: 0.5})) assert f6._d_expr(y).eval({x:0}) == 0 assert np.isclose(f6._d_expr(x).eval({x:0}), f6.d({x: 0})) assert f7._d_expr(y).eval({x:0}) == 0 assert np.isclose(f7._d_expr(x).eval({x:0}), f7.d({x: 0})) assert f8._d_expr(y).eval({x:1}) == 0 assert np.isclose(f8._d_expr(x).eval({x:2}), f8.d({x: 2})) assert f9._d_expr(y).eval({x:1}) == 0 assert np.isclose(f9._d_expr(x).eval({x:2}), f9.d({x: 2}))
def test_unop(): x = ad.Variable("x") y = -x assert np.isclose(y.d_n(n=0, val=2.0), -2.0) assert np.isclose(y.d_n(n=1, val=2.0), -1.0) assert np.isclose(y.d_n(n=2, val=2.0), 0.0) y = ad.Sin(2 * x) assert np.isclose(y.d_n(n=0, val=0.0), 0.0) assert np.isclose(y.d_n(n=1, val=0.0), 2.0) assert np.isclose(y.d_n(n=3, val=0.0), -8.0) y = ad.Exp(3 * x) assert np.isclose(y.d_n(n=0, val=0.0), 1.0) assert np.isclose(y.d_n(n=1, val=0.0), 3.0) assert np.isclose(y.d_n(n=3, val=0.0), 27.0) y = ad.Log(2 * x) assert np.isclose(y.d_n(n=0, val=0.5), 0.0) assert np.isclose(y.d_n(n=1, val=0.5), 2.0) assert np.isclose(y.d_n(n=3, val=0.5), 2.0 / (0.5**3))
def test_complex(): x = ad.Variable("x") y = -12 * ad.Cos(x**2) + 8 * (x**3) * ad.Sin(x**2) yd5 = y.d_expr(5) assert np.isclose(y.d_n(5, 2.0), yd5.eval({x: 2.0}))
def test_sine_expression(): a = ad.Variable('a') b = ad.Sin(a) assert np.isclose(b.eval({a: pi/2}), 1) assert np.isclose(b.d({a: pi/2}), 0)
def test_addition(): x = ad.Variable("x") y = x + ad.Sin(x) yd1 = y.d_expr() assert np.isclose(yd1.eval({x: 0.0}), 2.0)