Esempio n. 1
0
    dT_CI_u = dT + np.sqrt(var_up_school**2 + var_up_nonschool**2)

    return (dT[1:], dT_CI_l[1:], dT_CI_u[1:])


rt1_10x = run_simulation(*models(0, 1.10*school_Rt))
rt1_25x = run_simulation(*models(0, 1.25*school_Rt))
rt1_50x = run_simulation(*models(0, 1.50*school_Rt))

(dates, Rt_pred, Rt_CI_upper, Rt_CI_lower, T_pred, T_CI_upper, T_CI_lower, total_cases, new_cases_ts, anomalies, anomaly_dates)\
    = analytical_MPVS(age_ts.sum(level = 1), CI = CI, smoothing = smoothing, totals = False)

MAK = SIR(name = "MAK", population = 1.339e6, dT0 = T_pred[-1], Rt0 = Rt_pred[-1], upper_CI = T_CI_upper[-1], lower_CI = T_CI_lower[-1], mobility = 0, random_seed = 0, I0 = age_ts.sum(level = 1).sum()).run(30)

plt.daily_cases(dates, T_pred, T_CI_upper, T_CI_lower, new_cases_ts, anomaly_dates, anomalies, CI, 
    prediction_ts = [
        (MAK.dT[:-1], MAK.lower_CI[1:], MAK.upper_CI[1:], plt.PRED_PURPLE, "current social distancing"),
        (*rt1_10x, "orange",         "10% increase in school-age $R_t$"),
        (*rt1_25x, "mediumseagreen", "25% increase in school-age $R_t$"),
        (*rt1_50x, "hotpink",        "50% increase in school-age $R_t$"),
    ])\
    .xlabel("\ndate")\
    .ylabel("cases\n")
    # .title("\nMakassar Daily Cases - school reopening scenarios")\
    # .annotate("\nBayesian training process on empirical data, with anomalies identified")
(_, r) = plt.xlim()
plt.xlim(left = pd.Timestamp("Sep 1, 2020"), right = r)
plt.ylim(bottom = 10, top = 1000)
plt.vlines(dates[-1], ymin = 1, ymax = 1000, color = "black", linestyles = "solid")
plt.semilogy()
plt.show()
Esempio n. 2
0
    .xlabel("\ndate")\
    .ylabel("$R_t$\n", rotation=0, labelpad=30)\
    .annotate(f"\n{window}-day smoothing window, gamma-prior Bayesian estimation method")\
    .show()

logger.info("running case-forward prediction")
prediction_period = 14*days
I0 = (~cases.confirmed.isna()).sum() - (~cases.recovered.isna()).sum() - (~cases.died.isna()).sum()
IDN = SIR(name = "IDN", population = 8_819_500, dT0 = T_pred[-1], Rt0 = Rt_pred[-1], upper_CI = T_CI_upper[-1], lower_CI = T_CI_lower[-1], mobility = 0, random_seed = 0, I0 = I0)\
           .run(prediction_period)

plt.daily_cases(dates, T_pred, T_CI_upper, T_CI_lower, new_cases_ts, anomaly_dates, anomalies, CI, 
    prediction_ts = [
        (IDN.dT[:-1], IDN.lower_CI[1:], IDN.upper_CI[1:], plt.PRED_PURPLE, "predicted cases")
    ])\
    .title("\nSouth Sulawesi: Daily Cases")\
    .xlabel("\ndate")\
    .ylabel("cases\n")\
    .annotate("\nBayesian training process on empirical data, with anomalies identified")\
    .show()

# makassar estimates 
mak_cases     = cases[cases.regency == "Makassar"]
mak_new_cases = mak_cases.confirmed.value_counts().sort_index()
logger.info("running city-level Rt estimate")
(dates, Rt_pred, Rt_CI_upper, Rt_CI_lower, T_pred, T_CI_upper, T_CI_lower, total_cases, new_cases_ts, anomalies, anomaly_dates)\
    = analytical_MPVS(mak_new_cases, CI = CI, smoothing = smoothing, totals = False)

plt.Rt(dates, Rt_pred, Rt_CI_upper, Rt_CI_lower, CI)\
    .title("\nMakassar: Reproductive Number Estimate")\
    .xlabel("\ndate")\
Esempio n. 3
0
        ]
        model = lambda: Model.single_unit(name=state,
                                          RR0=Rt_pred[-1],
                                          population=pop,
                                          infectious_period=infectious_period,
                                          I0=T_pred[-1],
                                          lower_CI=T_CI_lower[-1],
                                          upper_CI=T_CI_upper[-1],
                                          random_seed=33)
        forward_pred_period = 9
        t_pred = [
            dates[-1] + pd.Timedelta(days=i)
            for i in range(forward_pred_period + 1)
        ]
        current = model().run(forward_pred_period)
        target = simulate_PID_controller(model(), 0, forward_pred_period)
        plt.Rt(dates, Rt_pred, Rt_CI_upper, Rt_CI_lower, CI, ymin = 0, ymax = 5, yaxis_colors = False)\
            .adjust(left = 0.10, right = 0.95, bottom = 0.15, top = 0.95)\
            .xlabel("date")\
            .ylabel("$R_t$")\
            .show()
        plt.daily_cases(dates, T_pred, T_CI_upper, T_CI_lower, new_cases_ts, anomaly_dates, anomalies, CI,
            prediction_ts = [
                (current[0].delta_T[1:], current[0].lower_CI[1:], current[0].upper_CI[1:], "orange", r"projection with current $R_t$"),
                (target[0].delta_T[1:],  target[0].lower_CI[1:],  target[0].upper_CI[1:],  "green",  r"projection with $R_t \rightarrow 0.9$")
            ])\
            .adjust(left = 0.10, right = 0.95, bottom = 0.15, top = 0.95)\
            .xlabel("date")\
            .ylabel("cases")\
            .show()
Esempio n. 4
0
np.random.seed(33)
Bihar = SIR("Bihar",
            99_000_000,
            dT0=T_pred[-1],
            Rt0=Rt_pred[-1],
            lower_CI=T_CI_lower[-1],
            upper_CI=T_CI_upper[-1],
            mobility=0)
Bihar.run(14)

t_pred = [dates[-1] + pd.Timedelta(days=i) for i in range(len(Bihar.dT))]

plt.daily_cases(dates, T_pred[1:], T_CI_upper[1:], T_CI_lower[1:], new_cases_ts[1:], anomaly_dates, anomalies, CI,
    prediction_ts = [
        (Bihar.dT, Bihar.lower_CI, Bihar.upper_CI, None, "predicted cases")
    ])\
    .title("\nBihar: New Daily Cases")\
    .annotate(f"data from {str(dates[0]).split()[0]} to {str(dates[-1]).split()[0]}; predictions until {str(t_pred[-1]).split()[0]}")\
    .xlabel("date").ylabel("cases")\
    .show()

# now, do district-level estimation
smoothing = 10
state_cases["geo_reported"] = state_cases.geo_reported.str.strip()
district_time_series = state_cases.groupby(
    ["geo_reported", "date_reported"])["date_reported"].count().sort_index()
migration = np.zeros((len(district_names), len(district_names)))
estimates = []
max_len = 1 + max(map(len, district_names))
with tqdm(etl.normalize(district_names)) as districts:
    for district in districts:
        districts.set_description(f"{district :<{max_len}}")
Esempio n. 5
0
    .xlabel("\ndate")\
    .ylabel("$R_t$\n", rotation=0, labelpad=30)\
    .annotate(f"\n{window}-day smoothing window, gamma-prior Bayesian estimation method")\
    .show()


logger.info("running case-forward prediction")
prediction_period = 14*days
IDN = SIR(name = "IDN", population = 267.7e6, dT0 = T_pred[-1], Rt0 = RR_pred[-1], upper_CI = T_CI_upper[-1], lower_CI = T_CI_lower[-1], mobility = 0, random_seed = 0)\
           .run(prediction_period)
 
plt.daily_cases(dates, T_pred[1:], T_CI_upper[1:], T_CI_lower[1:], new_cases_ts[1:], anomaly_dates, anomalies, CI, 
    prediction_ts = [
        (IDN.dT[:-1], IDN.lower_CI[1:], IDN.upper_CI[1:], None, "predicted cases")
    ])\
    .title("\nDKI Jakarta: Daily Cases")\
    .xlabel("\ndate")\
    .ylabel("cases\n")\
    .annotate("\nBayesian training process on empirical data, with anomalies identified")\
    .show()

logger.info("district-level projections")
district_cases = dkij.groupby(["district", "date_positiveresult"])["id"].count().sort_index()
districts = dkij.district.unique()
migration = np.zeros((len(districts), len(districts)))
estimates = []
max_len = 1 + max(map(len, districts))
with tqdm(districts) as progress:
    for district in districts:
        progress.set_description(f"{district :<{max_len}}")
        (dates, RR_pred, RR_CI_upper, RR_CI_lower, *_) = analytical_MPVS(district_cases.loc[district], CI = CI, smoothing = smoothing, totals=False)
Esempio n. 6
0
    plt.Rt(dates, Rt_pred, RR_CI_lower, RR_CI_upper, CI)\
        .ylabel("$R_t$")\
        .xlabel("date")\
        .title(f"\n{state}: Reproductive Number Estimate")\
        .annotate(f"public data from {str(dates[0]).split()[0]} to {str(dates[-1]).split()[0]}")\
        .show()
    
    I0 = (ts.loc[state].Hospitalized - ts.loc[state].Recovered - ts.loc[state].Deceased).sum()
    state_model = SIR(name = state, population = pop, dT0 = T_pred[-1], Rt0 = Rt_pred[-1], mobility = 0, I0 = I0, upper_CI = T_CI_upper[-1], lower_CI = T_CI_lower[-1], random_seed = 0).run(10)

    empirical = state_ts_full[(state_ts_full.index >= "Oct 14, 2020") & (state_ts_full.index < "Oct 25, 2020")]

    plt.daily_cases(dates, T_pred, T_CI_upper, T_CI_lower, new_cases_ts, anomaly_dates, anomalies, CI, 
        prediction_ts=[
            (state_model.dT, state_model.lower_CI, state_model.upper_CI, plt.PRED_PURPLE, "predicted cases"),
        ] + [(empirical, empirical, empirical, "black", "empirical post-prediction cases")] if state != "Maharashtra" else [])\
        .ylabel("cases")\
        .xlabel("date")\
        .title(f"\n{state}: Daily Cases")\
        .annotate("\nBayesian training process on empirical data, with anomalies identified")
    _, r = plt.xlim()
    plt.xlim(left = pd.Timestamp("August 01, 2020"), right = r)
    plt.show()
    
    gdf = gpd.read_file(data/f"{code}.json")
    district_names = sorted(gdf.district)
    district_time_series = get_time_series(df[df.detected_state == state], "detected_district").Hospitalized
    migration = np.zeros((len(district_names), len(district_names)))
    estimates = []
    max_len = 1 + max(map(len, district_names))
    with tqdm(district_time_series.index.get_level_values(0).unique()) as districts:
        for district in districts: