Esempio n. 1
0
from and_node import And
from warp_affine import WarpAffine
from dubbel_io_test import DubbelIoTest

#Only create node classes once, when module is first loaded
DEFAULT_DUMMY_NODE = BaseNode() #Used if name of node is not in the dictionary

NODE_DICTIONARY = {'HalfScaleGaussian'  : HalfScaleGaussian(),
                   'Subtract'           : Subtract(),
                   'Threshold'          : Threshold(),
                   'Sobel3x3'           : Sobel3x3(),
                   'AbsDiff'            : AbsDiff(),
                   'ConvertDepth'       : ConvertDepth(),
                   'Dilate3x3'          : Dilate3x3(),
                   'Erode3x3'           : Erode3x3(),
                   'Add'                : Add(),
                   'Multiply'           : Multiply(),
                   'ScaleImage'         : ScaleImage(),
                   'Magnitude'          : Magnitude(),
                   'TableLookup'        : TableLookup(),
                   'Or'                 : Or(),
                   'And'                : And(),
                   'WarpAffine'         : WarpAffine(),
                   'DubbelIoTest'       : DubbelIoTest(), #This is a dummy node used only for testing the parser.
                   'Dilate2x2'          : Dilate2x2(),
                   'Erode2x2'           : Erode2x2()
                   }

#This dict gives the first parameter index for the first input image in the vxCreateXXXNode function call
#Note that the vx_graph parameter is not counted when accessing node parameters
#Therefore the first index starts on 0, for the first parameter AFTER vx_graph.
Esempio n. 2
0
 def add(self):
     self.add = Add()
     self.add.show()
Esempio n. 3
0
    def as_real_imag(self, deep=True, **hints):
        from sympy.core.symbol import symbols
        from sympy.polys.polytools import poly
        from sympy.core.function import expand_multinomial
        if self.exp.is_Integer:
            exp = self.exp
            re, im = self.base.as_real_imag(deep=deep)
            a, b = symbols('a b', cls=Dummy)
            if exp >= 0:
                if re.is_Number and im.is_Number:
                    # We can be more efficient in this case
                    expr = expand_multinomial(self.base**exp)
                    return expr.as_real_imag()

                expr = poly(
                    (a + b)**exp)  # a = re, b = im; expr = (a + b*I)**exp
            else:
                mag = re**2 + im**2
                re, im = re / mag, -im / mag
                if re.is_Number and im.is_Number:
                    # We can be more efficient in this case
                    expr = expand_multinomial(
                        (re + im * S.ImaginaryUnit)**-exp)
                    return expr.as_real_imag()

                expr = poly((a + b)**-exp)

            # Terms with even b powers will be real
            r = [i for i in expr.terms() if not i[0][1] % 2]
            re_part = Add(*[cc * a**aa * b**bb for (aa, bb), cc in r])
            # Terms with odd b powers will be imaginary
            r = [i for i in expr.terms() if i[0][1] % 4 == 1]
            im_part1 = Add(*[cc * a**aa * b**bb for (aa, bb), cc in r])
            r = [i for i in expr.terms() if i[0][1] % 4 == 3]
            im_part3 = Add(*[cc * a**aa * b**bb for (aa, bb), cc in r])

            return (re_part.subs({
                a: re,
                b: S.ImaginaryUnit * im
            }), im_part1.subs({
                a: re,
                b: im
            }) + im_part3.subs({
                a: re,
                b: -im
            }))

        elif self.exp.is_Rational:
            # NOTE: This is not totally correct since for x**(p/q) with
            #       x being imaginary there are actually q roots, but
            #       only a single one is returned from here.
            re, im = self.base.as_real_imag(deep=deep)

            r = Pow(Pow(re, 2) + Pow(im, 2), S.Half)
            t = C.atan2(im, re)

            rp, tp = Pow(r, self.exp), t * self.exp

            return (rp * C.cos(tp), rp * C.sin(tp))
        else:

            if deep:
                hints['complex'] = False
                return (C.re(self.expand(deep, complex=False)),
                        C.im(self.expand(deep, **hints)))
            else:
                return (C.re(self), C.im(self))
Esempio n. 4
0
    def _eval_nseries(self, x, n, logx):
        # NOTE! This function is an important part of the gruntz algorithm
        #       for computing limits. It has to return a generalized power series
        #       with coefficients in C(log, log(x)). In more detail:
        # It has to return an expression
        #     c_0*x**e_0 + c_1*x**e_1 + ... (finitely many terms)
        # where e_i are numbers (not necessarily integers) and c_i are expression
        # involving only numbers, the log function, and log(x).
        from sympy import powsimp, collect, exp, log, O, ceiling
        b, e = self.args
        if e.is_Integer:
            if e > 0:
                # positive integer powers are easy to expand, e.g.:
                # sin(x)**4 = (x-x**3/3+...)**4 = ...
                return Pow(b._eval_nseries(x, n=n, logx=logx),
                           e)._eval_expand_multinomial(deep=False)
            elif e is S.NegativeOne:
                # this is also easy to expand using the formula:
                # 1/(1 + x) = 1 - x + x**2 - x**3 ...
                # so we need to rewrite base to the form "1+x"

                b = b._eval_nseries(x, n=n, logx=logx)
                prefactor = b.as_leading_term(x)
                # express "rest" as: rest = 1 + k*x**l + ... + O(x**n)
                rest = ((b - prefactor) / prefactor)._eval_expand_mul()
                if rest == 0:
                    # if prefactor == w**4 + x**2*w**4 + 2*x*w**4, we need to
                    # factor the w**4 out using collect:
                    return 1 / collect(prefactor, x)
                if rest.is_Order:
                    return 1 / prefactor + rest / prefactor
                n2 = rest.getn()
                if n2 is not None:
                    n = n2
                    # remove the O - powering this is slow
                    if logx is not None:
                        rest = rest.removeO()

                k, l = rest.leadterm(x)
                if l.is_Rational and l > 0:
                    pass
                elif l.is_number and l > 0:
                    l = l.evalf()
                else:
                    raise NotImplementedError()

                terms = [1 / prefactor]
                for m in xrange(1, ceiling(n / l)):
                    new_term = terms[-1] * (-rest)
                    if new_term.is_Pow:
                        new_term = new_term._eval_expand_multinomial(
                            deep=False)
                    else:
                        new_term = new_term._eval_expand_mul(deep=False)
                    terms.append(new_term)

                # Append O(...), we know the order.
                if n2 is None or logx is not None:
                    terms.append(O(x**n))
                return powsimp(Add(*terms), deep=True, combine='exp')
            else:
                # negative powers are rewritten to the cases above, for example:
                # sin(x)**(-4) = 1/( sin(x)**4) = ...
                # and expand the denominator:
                denominator = (b**(-e))._eval_nseries(x, n=n, logx=logx)
                if 1 / denominator == self:
                    return self
                # now we have a type 1/f(x), that we know how to expand
                return (1 / denominator)._eval_nseries(x, n=n, logx=logx)

        if e.has(Symbol):
            return exp(e * log(b))._eval_nseries(x, n=n, logx=logx)

        if b == x:
            return powsimp(self, deep=True, combine='exp')

        # work for b(x)**e where e is not an Integer and does not contain x
        # and hopefully has no other symbols

        def e2int(e):
            """return the integer value (if possible) of e and a
            flag indicating whether it is bounded or not."""
            n = e.limit(x, 0)
            unbounded = n.is_unbounded
            if not unbounded:
                # XXX was int or floor intended? int used to behave like floor
                # so int(-Rational(1, 2)) returned -1 rather than int's 0
                try:
                    n = int(n)
                except TypeError:
                    #well, the n is something more complicated (like 1+log(2))
                    try:
                        n = int(n.evalf()) + 1  # XXX why is 1 being added?
                    except TypeError:
                        pass  # hope that base allows this to be resolved
                n = _sympify(n)
            return n, unbounded

        order = O(x**n, x)
        ei, unbounded = e2int(e)
        b0 = b.limit(x, 0)
        if unbounded and (b0 is S.One or b0.has(Symbol)):
            # XXX what order
            if b0 is S.One:
                resid = (b - 1)
                if resid.is_positive:
                    return S.Infinity
                elif resid.is_negative:
                    return S.Zero
                raise ValueError('cannot determine sign of %s' % resid)

            return b0**ei

        if (b0 is S.Zero or b0.is_unbounded):
            if unbounded is not False:
                return b0**e  # XXX what order

            if not ei.is_number:  # if not, how will we proceed?
                raise ValueError('expecting numerical exponent but got %s' %
                                 ei)

            nuse = n - ei
            lt = b.compute_leading_term(x, logx=logx)  # arg = sin(x); lt = x
            #  XXX o is not used -- was this to be used as o and o2 below to compute a new e?
            o = order * lt**(1 - e)
            bs = b._eval_nseries(x, n=nuse, logx=logx)
            if bs.is_Add:
                bs = bs.removeO()
            if bs.is_Add:
                # bs -> lt + rest -> lt*(1 + (bs/lt - 1))
                return ((Pow(lt, e) * Pow((bs / lt).expand(), e).nseries(
                    x, n=nuse, logx=logx)).expand() + order)

            return bs**e + order

        # either b0 is bounded but neither 1 nor 0 or e is unbounded
        # b -> b0 + (b-b0) -> b0 * (1 + (b/b0-1))
        o2 = order * (b0**-e)
        z = (b / b0 - 1)
        o = O(z, x)
        #r = self._compute_oseries3(z, o2, self.taylor_term)
        if o is S.Zero or o2 is S.Zero:
            unbounded = True
        else:
            if o.expr.is_number:
                e2 = log(o2.expr * x) / log(x)
            else:
                e2 = log(o2.expr) / log(o.expr)
            n, unbounded = e2int(e2)
        if unbounded:
            # requested accuracy gives infinite series,
            # order is probably non-polynomial e.g. O(exp(-1/x), x).
            r = 1 + z
        else:
            l = []
            g = None
            for i in xrange(n + 2):
                g = self.taylor_term(i, z, g)
                g = g.nseries(x, n=n, logx=logx)
                l.append(g)
            r = Add(*l)
        return r * b0**e + order
Esempio n. 5
0
    def extract_multiplicatively(self, c):
        """Return None if it's not possible to make self in the form
           c * something in a nice way, i.e. preserving the properties
           of arguments of self.

           >>> from sympy import symbols, Rational

           >>> x, y = symbols('xy', real=True)

           >>> ((x*y)**3).extract_multiplicatively(x**2 * y)
           x*y**2

           >>> ((x*y)**3).extract_multiplicatively(x**4 * y)

           >>> (2*x).extract_multiplicatively(2)
           x

           >>> (2*x).extract_multiplicatively(3)

           >>> (Rational(1,2)*x).extract_multiplicatively(3)
           x/6

        """
        c = sympify(c)
        if c is S.One:
            return self
        elif c == self:
            return S.One
        elif c.is_Mul:
            x = self.extract_multiplicatively(c.as_two_terms()[0])
            if x != None:
                return x.extract_multiplicatively(c.as_two_terms()[1])
        quotient = self / c
        if self.is_Number:
            if self is S.Infinity:
                if c.is_positive:
                    return S.Infinity
            elif self is S.NegativeInfinity:
                if c.is_negative:
                    return S.Infinity
                elif c.is_positive:
                    return S.NegativeInfinity
            elif self is S.ComplexInfinity:
                if not c.is_zero:
                    return S.ComplexInfinity
            elif self is S.NaN:
                return S.NaN
            elif self.is_Integer:
                if not quotient.is_Integer:
                    return None
                elif self.is_positive and quotient.is_negative:
                    return None
                else:
                    return quotient
            elif self.is_Rational:
                if not quotient.is_Rational:
                    return None
                elif self.is_positive and quotient.is_negative:
                    return None
                else:
                    return quotient
            elif self.is_Real:
                if not quotient.is_Real:
                    return None
                elif self.is_positive and quotient.is_negative:
                    return None
                else:
                    return quotient
        elif self.is_NumberSymbol or self.is_Symbol or self is S.ImaginaryUnit:
            if quotient.is_Mul and len(quotient.args) == 2:
                if quotient.args[0].is_Integer and quotient.args[0].is_positive and quotient.args[1] == self:
                    return quotient
            elif quotient.is_Integer:
                return quotient
        elif self.is_Add:
            newargs = []
            for arg in self.args:
                newarg = arg.extract_multiplicatively(c)
                if newarg != None:
                    newargs.append(newarg)
                else:
                    return None
            return Add(*newargs)
        elif self.is_Mul:
            for i in xrange(len(self.args)):
                newargs = list(self.args)
                del(newargs[i])
                tmp = self._new_rawargs(*newargs).extract_multiplicatively(c)
                if tmp != None:
                    return tmp * self.args[i]
        elif self.is_Pow:
            if c.is_Pow and c.base == self.base:
                new_exp = self.exp.extract_additively(c.exp)
                if new_exp != None:
                    return self.base ** (new_exp)
            elif c == self.base:
                new_exp = self.exp.extract_additively(1)
                if new_exp != None:
                    return self.base ** (new_exp)
Esempio n. 6
0
    def _eval_expand_multinomial(self, deep=True, **hints):
        """(a+b+..) ** n -> a**n + n*a**(n-1)*b + .., n is nonzero integer"""
        if deep:
            b = self.base.expand(deep=deep, **hints)
            e = self.exp.expand(deep=deep, **hints)
        else:
            b = self.base
            e = self.exp

        if b is None:
            base = self.base
        else:
            base = b

        if e is None:
            exp = self.exp
        else:
            exp = e

        if e is not None or b is not None:
            result = Pow(base, exp)

            if result.is_Pow:
                base, exp = result.base, result.exp
            else:
                return result
        else:
            result = None

        if exp.is_Rational and exp.p > 0 and base.is_Add:
            if not exp.is_Integer:
                n = Integer(exp.p // exp.q)

                if not n:
                    return Pow(base, exp)
                else:
                    radical, result = Pow(base, exp - n), []

                    for term in Add.make_args(
                            Pow(base, n)._eval_expand_multinomial(deep=False)):
                        result.append(term * radical)

                    return Add(*result)

            n = int(exp)

            if base.is_commutative:
                order_terms, other_terms = [], []

                for order in base.args:
                    if order.is_Order:
                        order_terms.append(order)
                    else:
                        other_terms.append(order)

                if order_terms:
                    # (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n)
                    f = Add(*other_terms)
                    g = (f**(n - 1)).expand()

                    return (f * g).expand() + n * g * Add(*order_terms)

                if base.is_number:
                    # Efficiently expand expressions of the form (a + b*I)**n
                    # where 'a' and 'b' are real numbers and 'n' is integer.
                    a, b = base.as_real_imag()

                    if a.is_Rational and b.is_Rational:
                        if not a.is_Integer:
                            if not b.is_Integer:
                                k = Pow(a.q * b.q, n)
                                a, b = a.p * b.q, a.q * b.p
                            else:
                                k = Pow(a.q, n)
                                a, b = a.p, a.q * b
                        elif not b.is_Integer:
                            k = Pow(b.q, n)
                            a, b = a * b.q, b.p
                        else:
                            k = 1

                        a, b, c, d = int(a), int(b), 1, 0

                        while n:
                            if n & 1:
                                c, d = a * c - b * d, b * c + a * d
                                n -= 1
                            a, b = a * a - b * b, 2 * a * b
                            n //= 2

                        I = S.ImaginaryUnit

                        if k == 1:
                            return c + I * d
                        else:
                            return Integer(c) / k + I * d / k

                p = other_terms
                # (x+y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3
                # in this particular example:
                # p = [x,y]; n = 3
                # so now it's easy to get the correct result -- we get the
                # coefficients first:
                from sympy import multinomial_coefficients
                expansion_dict = multinomial_coefficients(len(p), n)
                # in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3}
                # and now construct the expression.

                # An elegant way would be to use Poly, but unfortunately it is
                # slower than the direct method below, so it is commented out:
                #b = {}
                #for k in expansion_dict:
                #    b[k] = Integer(expansion_dict[k])
                #return Poly(b, *p).as_expr()

                from sympy.polys.polyutils import basic_from_dict
                result = basic_from_dict(expansion_dict, *p)
                return result
            else:
                if n == 2:
                    return Add(*[f * g for f in base.args for g in base.args])
                else:
                    multi = (base**(n -
                                    1))._eval_expand_multinomial(deep=False)
                    if multi.is_Add:
                        return Add(
                            *[f * g for f in base.args for g in multi.args])
                    else:
                        return Add(*[f * multi for f in base.args])
        elif exp.is_Rational and exp.p < 0 and base.is_Add and abs(
                exp.p) > exp.q:
            return 1 / Pow(base, -exp)._eval_expand_multinomial(deep=False)
        elif exp.is_Add and base.is_Number:
            #  a + b      a  b
            # n      --> n  n  , where n, a, b are Numbers

            coeff, tail = S.One, S.Zero

            for term in exp.args:
                if term.is_Number:
                    coeff *= Pow(base, term)
                else:
                    tail += term

            return coeff * Pow(base, tail)
        else:
            return result
Esempio n. 7
0
 def __rsub__(self, other):
     return Add(other, -self)
Esempio n. 8
0
 def __sub__(self, other):
     return Add(self, -other)
Esempio n. 9
0
 def __radd__(self, other):
     return Add(other, self)
Esempio n. 10
0
 def __add__(self, other):
     return Add(self, other)
Esempio n. 11
0
def count_ops(expr, visual=False):
    """
    Return a representation (integer or expression) of the operations in expr.

    If `visual` is False (default) then the sum of the coefficients of the
    visual expression will be returned.

    If `visual` is True then the number of each type of operation is shown
    with the core class types (or their virtual equivalent) multiplied by the
    number of times they occur.

    If expr is an iterable, the sum of the op counts of the
    items will be returned.

    Examples:
        >>> from sympy.abc import a, b, x, y
        >>> from sympy import sin, count_ops

    Although there isn't a SUB object, minus signs are interpreted as
    either negations or subtractions:
        >>> (x - y).count_ops(visual=True)
        SUB
        >>> (-x).count_ops(visual=True)
        NEG

    Here, there are two Adds and a Pow:
        >>> (1 + a + b**2).count_ops(visual=True)
        POW + 2*ADD

    In the following, an Add, Mul, Pow and two functions:
        >>> (sin(x)*x + sin(x)**2).count_ops(visual=True)
        ADD + MUL + POW + 2*SIN

    for a total of 5:
        >>> (sin(x)*x + sin(x)**2).count_ops(visual=False)
        5

    Note that "what you type" is not always what you get. The expression
    1/x/y is translated by sympy into 1/(x*y) so it gives a DIV and MUL rather
    than two DIVs:
        >>> (1/x/y).count_ops(visual=True)
        DIV + MUL

    The visual option can be used to demonstrate the difference in
    operations for expressions in different forms. Here, the Horner
    representation is compared with the expanded form of a polynomial:
        >>> eq=x*(1 + x*(2 + x*(3 + x)))
        >>> count_ops(eq.expand(), visual=True) - count_ops(eq, visual=True)
        -MUL + 3*POW

    The count_ops function also handles iterables:
        >>> count_ops([x, sin(x), None, True, x + 2], visual=False)
        2
        >>> count_ops([x, sin(x), None, True, x + 2], visual=True)
        ADD + SIN
        >>> count_ops({x: sin(x), x + 2: y + 1}, visual=True)
        SIN + 2*ADD

    """
    from sympy.simplify.simplify import fraction

    expr = sympify(expr)
    if isinstance(expr, Expr):

        ops = []
        args = [expr]
        NEG = C.Symbol('NEG')
        DIV = C.Symbol('DIV')
        SUB = C.Symbol('SUB')
        ADD = C.Symbol('ADD')

        def isneg(a):
            c = a.as_coeff_mul()[0]
            return c.is_Number and c.is_negative

        while args:
            a = args.pop()
            if a.is_Rational:
                #-1/3 = NEG + DIV
                if a is not S.One:
                    if a.p < 0:
                        ops.append(NEG)
                    if a.q != 1:
                        ops.append(DIV)
                    continue
            elif a.is_Mul:
                if isneg(a):
                    ops.append(NEG)
                    if a.args[0] is S.NegativeOne:
                        a = a.as_two_terms()[1]
                    else:
                        a = -a
                n, d = fraction(a)
                if n.is_Integer:
                    ops.append(DIV)
                    if n < 0:
                        ops.append(NEG)
                    args.append(d)
                    continue  # won't be -Mul but could be Add
                elif d is not S.One:
                    if not d.is_Integer:
                        args.append(d)
                    ops.append(DIV)
                    args.append(n)
                    continue  # could be -Mul
            elif a.is_Add:
                aargs = list(a.args)
                negs = 0
                for i, ai in enumerate(aargs):
                    if isneg(ai):
                        negs += 1
                        args.append(-ai)
                        if i > 0:
                            ops.append(SUB)
                    else:
                        args.append(ai)
                        if i > 0:
                            ops.append(ADD)
                if negs == len(aargs):  # -x - y = NEG + SUB
                    ops.append(NEG)
                elif isneg(aargs[0]
                           ):  # -x + y = SUB, but we already recorded an ADD
                    ops.append(SUB - ADD)
                continue
            if a.is_Pow and a.exp is S.NegativeOne:
                ops.append(DIV)
                args.append(a.base)  # won't be -Mul but could be Add
                continue
            if (a.is_Mul or a.is_Pow or a.is_Function
                    or isinstance(a, Derivative) or isinstance(a, C.Integral)):

                o = C.Symbol(a.func.__name__.upper())
                # count the args
                if (a.is_Mul or isinstance(a, C.LatticeOp)):
                    ops.append(o * (len(a.args) - 1))
                else:
                    ops.append(o)
            args.extend(a.args)

    elif type(expr) is dict:
        ops = [
            count_ops(k, visual=visual) + count_ops(v, visual=visual)
            for k, v in expr.iteritems()
        ]
    elif hasattr(expr, '__iter__'):
        ops = [count_ops(i, visual=visual) for i in expr]
    elif not isinstance(expr, Basic):
        ops = []
    else:  # it's Basic not isinstance(expr, Expr):
        assert isinstance(expr, Basic)
        ops = [count_ops(a, visual=visual) for a in expr.args]

    if not ops:
        if visual:
            return S.Zero
        return 0

    ops = Add(*ops)

    if visual:
        return ops

    if ops.is_Number:
        return int(ops)

    return sum(int((a.args or [1])[0]) for a in Add.make_args(ops))