def train(): with tf.Graph().as_default(): global_step = tf.train.get_or_create_global_step() with tf.device('/cpu:0'): images, labels = adience.distored_inputs() logits = adience.inference(images) loss = adience.loss(logits, labels) train_op = adience.train(loss, global_step) class _LoggerHook(tf.train.SessionRunHook): def begin(self): self._step = -1 self._start_time = time.time() def before_run(self, run_context): self._step += 1 return tf.train.SessionRunArgs(loss) def after_run(self, run_context, run_values): if self._step % FLAGS.log_frequency == 0: current_time = time.time() duration = current_time - self._start_time loss_value = run_values.results examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration sec_per_batch = float(duration / FLAGS.log_frequency) format_str = ('%s: step %d, loss = %.2f (%1.f examples/sec; %.3f ' 'sec/batch)') print(format_str % (datetime.now(), self._step, loss_value, examples_per_sec, sec_per_batch)) with tf.train.MonitoredTrainingSession( checkpoint_dir=FLAGS.train_dir, hooks=[tf.train.StopAtStepHook(last_step=FLAGS.max_steps), tf.train.NanTensorHook(loss), _LoggerHook()], config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement)) as mon_sess: while not mon_sess.should_stop(): mon_sess.run(train_op)
def evaluate(): """Eval CIFAR-10 for a number of steps.""" with tf.Graph().as_default(): # Get images and labels for CIFAR-10. eval_data = FLAGS.eval_data == 'test' images, labels = adience.inputs(eval_data=eval_data) FLAGS.num_examples = adience.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL # Build a Graph that computes the logits predictions from the # inference model. logits = adience.inference(images) # Calculate predictions. top_k_op = tf.nn.in_top_k(logits, labels, 1) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage( adience.MOVING_AVERAGE_DECAY) variables_to_restore = {} for v in tf.all_variables(): if v in tf.trainable_variables(): restore_name = variable_averages.average_name(v) else: restore_name = v.op.name variables_to_restore[restore_name] = v saver = tf.train.Saver(variables_to_restore) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() graph_def = tf.get_default_graph().as_graph_def() summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir, graph_def=graph_def) while True: eval_once(saver, summary_writer, top_k_op, summary_op) if FLAGS.run_once: break time.sleep(FLAGS.eval_interval_secs)
def train(train_continue): """Train Adience for a number of steps.""" with tf.Graph().as_default(): global_step = tf.Variable(0, trainable=False) # Get images and labels for Adience. images, labels = adience.distorted_inputs() print("distorted images") #print(labels) # Build a Graph that computes the logits predictions from the # inference model. print('call inference') logits = adience.inference(images) # Calculate loss. print('call loss') loss = adience.loss(logits, labels) # Build a Grahalloph that trains the model with one batch of examples and # updates the model parameters. print('train_op') train_op = adience.train(loss, global_step) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Build an initialization operation to run below. init = tf.initialize_all_variables() # Start running operations on the Graph. sess = tf.Session(config=tf.ConfigProto( log_device_placement=FLAGS.log_device_placement)) sess.run(init) # Create a saver. if not train_continue: saver = tf.train.Saver(tf.all_variables()) load_step = 0 else: # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage( adience.MOVING_AVERAGE_DECAY) variables_to_restore = {} for v in tf.all_variables(): if v in tf.trainable_variables(): restore_name = variable_averages.average_name(v) else: restore_name = v.op.name variables_to_restore[restore_name] = v saver = tf.train.Saver(variables_to_restore) ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir) if ckpt and ckpt.model_checkpoint_path: print("Checkpoint found") # Restores from checkpoint saver.restore(sess, ckpt.model_checkpoint_path) # Assuming model_checkpoint_path looks something like: # /my-favorite-path/cifar10_train/model.ckpt-0, # extract global_step from it. load_step = int(ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]) + 1 print("Start from step: {}".format(load_step)) else: print('No checkpoint file found') # Start the queue runners. tf.train.start_queue_runners(sess=sess) summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, graph_def=sess.graph_def) for step in xrange(FLAGS.max_steps - load_step): # continue step += load_step start_time = time.time() _, loss_value = sess.run([train_op, loss]) duration = time.time() - start_time assert not np.isnan(loss_value), 'Model diverged with loss = NaN' if step % 10 == 0: num_examples_per_step = FLAGS.batch_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print (format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch)) if step % 100 == 0: summary_str = sess.run(summary_op) summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically. if step % 1000 == 0 or (step + 1) == FLAGS.max_steps: checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step) else: print("Step already over limit: {}".format(FLAGS.max_steps))