Esempio n. 1
0
def main():
    # LOAD ARGS
    args = get_arguments()
    print('Called with args:')
    print(args)

    assert args.cfg is not None, 'Missing cfg file'
    cfg_from_file(args.cfg)
    cfg.NUM_WORKERS = args.num_workers
    if args.option is not None:
        cfg.TRAIN.OPTION = args.option
    cfg.TRAIN.LAMBDA_BOUNDARY = args.LAMBDA_BOUNDARY
    cfg.TRAIN.LAMBDA_DICE = args.LAMBDA_DICE

    ## gan method settings
    cfg.GAN = args.gan
    if cfg.GAN == 'gan':
        cfg.TRAIN.LAMBDA_ADV_MAIN = 0.001  # GAN
    elif cfg.GAN == 'lsgan':
        cfg.TRAIN.LAMBDA_ADV_MAIN = 0.01  # LS-GAN
    else:
        raise NotImplementedError(f"Not Supported gan method")

    ### dataset settings
    cfg.SOURCE = args.source
    cfg.TARGET = args.target
    ## source config
    if cfg.SOURCE == 'GTA':
        cfg.DATA_LIST_SOURCE = str(project_root /
                                   'advent/dataset/gta5_list/{}.txt')
        cfg.DATA_DIRECTORY_SOURCE = str(project_root / 'data/GTA5')
        cfg.TRAIN.INPUT_SIZE_SOURCE = (1280, 720)

    elif cfg.SOURCE == 'SYNTHIA':
        raise NotImplementedError(f"Not yet supported {cfg.SOURCE} dataset")
    else:
        raise NotImplementedError(f"Not yet supported {cfg.SOURCE} dataset")

    ## target config
    if cfg.TARGET == 'Cityscapes':
        cfg.DATA_LIST_TARGET = str(project_root /
                                   'advent/dataset/cityscapes_list/{}.txt')
        cfg.DATA_DIRECTORY_TARGET = str(project_root / 'data/cityscapes')
        cfg.EXP_ROOT = project_root / 'experiments_G2C'
        cfg.EXP_ROOT_SNAPSHOT = osp.join(cfg.EXP_ROOT, 'snapshots_G2C')
        cfg.EXP_ROOT_LOGS = osp.join(cfg.EXP_ROOT, 'logs_G2C')
        cfg.TRAIN.INPUT_SIZE_TARGET = (1024, 512)
        cfg.TRAIN.INFO_TARGET = str(project_root /
                                    'advent/dataset/cityscapes_list/info.json')

        cfg.TEST.INPUT_SIZE_TARGET = (1024, 512)
        cfg.TEST.OUTPUT_SIZE_TARGET = (2048, 1024)
        cfg.TEST.INFO_TARGET = str(project_root /
                                   'advent/dataset/cityscapes_list/info.json')

    elif cfg.TARGET == 'BDD':
        cfg.DATA_LIST_TARGET = str(project_root /
                                   'advent/dataset/compound_list/{}.txt')
        cfg.DATA_DIRECTORY_TARGET = str(project_root / 'data/bdd/Compound')
        cfg.EXP_ROOT = project_root / 'experiments'
        cfg.EXP_ROOT_SNAPSHOT = osp.join(cfg.EXP_ROOT, 'snapshots')
        cfg.EXP_ROOT_LOGS = osp.join(cfg.EXP_ROOT, 'logs')
        cfg.TRAIN.INPUT_SIZE_TARGET = (960, 540)
        cfg.TRAIN.INFO_TARGET = str(project_root /
                                    'advent/dataset/compound_list/info.json')

    else:
        raise NotImplementedError(f"Not yet supported {cfg.TARGET} dataset")

    # auto-generate exp name if not specified
    if cfg.EXP_NAME == '':
        cfg.EXP_NAME = f'{cfg.SOURCE}2{cfg.TARGET}_{cfg.TRAIN.MODEL}_{cfg.TRAIN.DA_METHOD}_{cfg.TRAIN.OCDA_METHOD}'

    if args.exp_suffix:
        cfg.EXP_NAME += f'_{args.exp_suffix}'
    # auto-generate snapshot path if not specified
    if cfg.TRAIN.SNAPSHOT_DIR == '':
        cfg.TRAIN.SNAPSHOT_DIR = osp.join(cfg.EXP_ROOT_SNAPSHOT, cfg.EXP_NAME)
        os.makedirs(cfg.TRAIN.SNAPSHOT_DIR, exist_ok=True)
    # tensorboard
    if args.tensorboard:
        if cfg.TRAIN.TENSORBOARD_LOGDIR == '':
            cfg.TRAIN.TENSORBOARD_LOGDIR = osp.join(cfg.EXP_ROOT_LOGS,
                                                    'tensorboard',
                                                    cfg.EXP_NAME)
        os.makedirs(cfg.TRAIN.TENSORBOARD_LOGDIR, exist_ok=True)
        if args.viz_every_iter is not None:
            cfg.TRAIN.TENSORBOARD_VIZRATE = args.viz_every_iter
    else:
        cfg.TRAIN.TENSORBOARD_LOGDIR = ''

    print('Using config:')
    pprint.pprint(cfg)

    # INIT
    _init_fn = None
    if not args.random_train:
        torch.manual_seed(cfg.TRAIN.RANDOM_SEED)
        torch.cuda.manual_seed(cfg.TRAIN.RANDOM_SEED)
        np.random.seed(cfg.TRAIN.RANDOM_SEED)
        random.seed(cfg.TRAIN.RANDOM_SEED)

        def _init_fn(worker_id):
            np.random.seed(cfg.TRAIN.RANDOM_SEED + worker_id)

    if os.environ.get('ADVENT_DRY_RUN', '0') == '1':
        return

    # LOAD SEGMENTATION NET
    if cfg.TRAIN.MODEL == 'DeepLabv2':
        model = get_deeplab_v2(num_classes=cfg.NUM_CLASSES,
                               multi_level=cfg.TRAIN.MULTI_LEVEL)
        saved_state_dict = torch.load(cfg.TRAIN.RESTORE_FROM)
        if 'DeepLab_resnet_pretrained_imagenet' in cfg.TRAIN.RESTORE_FROM:
            new_params = model.state_dict().copy()
            for i in saved_state_dict:
                i_parts = i.split('.')
                if not i_parts[1] == 'layer5':
                    new_params['.'.join(i_parts[1:])] = saved_state_dict[i]
            model.load_state_dict(new_params)
        else:
            model.load_state_dict(saved_state_dict)
    elif cfg.TRAIN.MODEL == 'DeepLabv2_VGG':
        model = get_deeplab_v2_vgg(cfg=cfg,
                                   num_classes=cfg.NUM_CLASSES,
                                   pretrained_model=cfg.TRAIN_VGG_PRE_MODEL)

        if cfg.TRAIN.SELF_TRAINING:
            path = osp.join(cfg.EXP_ROOT_SNAPSHOT, cfg.TRAIN.RESTORE_FROM_SELF)
            saved_state_dict = torch.load(path)
            model.load_state_dict(saved_state_dict, strict=False)
            trg_list = cfg.DATA_LIST_TARGET_ORDER
            print("self-training model loaded: {} ".format(path))
        else:
            trg_list = cfg.DATA_LIST_TARGET
    else:
        raise NotImplementedError(f"Not yet supported {cfg.TRAIN.MODEL}")

    print("model: ")
    print(model)
    print('Model loaded')

    ########  DATALOADERS  ########
    # GTA5: 24,966: 274,626 / 24,966 = 11 epoch

    # self-training : target data shuffle
    shuffle = cfg.TRAIN.SHUFFLE
    if cfg.TRAIN.SELF_TRAINING:
        max_iteration = None
    else:
        max_iteration = cfg.TRAIN.MAX_ITERS * cfg.TRAIN.BATCH_SIZE_SOURCE

    source_dataset = GTA5DataSet(root=cfg.DATA_DIRECTORY_SOURCE,
                                 list_path=cfg.DATA_LIST_SOURCE,
                                 set=cfg.TRAIN.SET_SOURCE,
                                 max_iters=max_iteration,
                                 crop_size=cfg.TRAIN.INPUT_SIZE_SOURCE,
                                 mean=cfg.TRAIN.IMG_MEAN)
    source_loader = data.DataLoader(source_dataset,
                                    batch_size=cfg.TRAIN.BATCH_SIZE_SOURCE,
                                    num_workers=cfg.NUM_WORKERS,
                                    shuffle=True,
                                    pin_memory=True,
                                    worker_init_fn=_init_fn)
    if cfg.TARGET == "BDD":
        # GTA5: 14,697: 264,546 / 14,697 = 18 epoch
        target_dataset = BDDdataset(root=cfg.DATA_DIRECTORY_TARGET,
                                    list_path=trg_list,
                                    set=cfg.TRAIN.SET_TARGET,
                                    info_path=cfg.TRAIN.INFO_TARGET,
                                    max_iters=max_iteration,
                                    crop_size=cfg.TRAIN.INPUT_SIZE_TARGET,
                                    mean=cfg.TRAIN.IMG_MEAN)
        target_loader = data.DataLoader(target_dataset,
                                        batch_size=cfg.TRAIN.BATCH_SIZE_TARGET,
                                        num_workers=cfg.NUM_WORKERS,
                                        shuffle=shuffle,
                                        pin_memory=True,
                                        worker_init_fn=_init_fn)
    elif cfg.TARGET == 'Cityscapes':
        target_dataset = CityscapesDataSet(
            root=cfg.DATA_DIRECTORY_TARGET,
            list_path=cfg.DATA_LIST_TARGET,
            set=cfg.TRAIN.SET_TARGET,
            info_path=cfg.TRAIN.INFO_TARGET,
            max_iters=cfg.TRAIN.MAX_ITERS * cfg.TRAIN.BATCH_SIZE_TARGET,
            crop_size=cfg.TRAIN.INPUT_SIZE_TARGET,
            mean=cfg.TRAIN.IMG_MEAN)
        target_loader = data.DataLoader(target_dataset,
                                        batch_size=cfg.TRAIN.BATCH_SIZE_TARGET,
                                        num_workers=cfg.NUM_WORKERS,
                                        shuffle=True,
                                        pin_memory=True,
                                        worker_init_fn=_init_fn)
    else:
        raise NotImplementedError(f"Not yet supported {cfg.TARGET} datasets")

    with open(osp.join(cfg.TRAIN.SNAPSHOT_DIR, 'train_cfg.yml'),
              'w') as yaml_file:
        yaml.dump(cfg, yaml_file, default_flow_style=False)

    # UDA TRAINING
    train_domain_adaptation(model, source_loader, target_loader, cfg)
Esempio n. 2
0
def main():
    # LOAD ARGS
    args = get_arguments()
    print('Called with args:')
    print(args)

    assert args.cfg is not None, 'Missing cfg file'
    cfg_from_file(args.cfg)
    # auto-generate exp name if not specified
    if cfg.EXP_NAME == '':
        cfg.EXP_NAME = f'{cfg.SOURCE}2{cfg.TARGET}_{cfg.TRAIN.MODEL}_{cfg.TRAIN.DA_METHOD}'

    if args.exp_suffix:
        cfg.EXP_NAME += f'_{args.exp_suffix}'
    # auto-generate snapshot path if not specified
    if cfg.TRAIN.SNAPSHOT_DIR == '':
        cfg.TRAIN.SNAPSHOT_DIR = osp.join(cfg.EXP_ROOT_SNAPSHOT, cfg.EXP_NAME)
        os.makedirs(cfg.TRAIN.SNAPSHOT_DIR, exist_ok=True)
    # tensorboard
    if args.tensorboard:
        if cfg.TRAIN.TENSORBOARD_LOGDIR == '':
            cfg.TRAIN.TENSORBOARD_LOGDIR = osp.join(cfg.EXP_ROOT_LOGS,
                                                    'tensorboard',
                                                    cfg.EXP_NAME)
        os.makedirs(cfg.TRAIN.TENSORBOARD_LOGDIR, exist_ok=True)
        if args.viz_every_iter is not None:
            cfg.TRAIN.TENSORBOARD_VIZRATE = args.viz_every_iter
    else:
        cfg.TRAIN.TENSORBOARD_LOGDIR = ''
    print('Using config:')
    pprint.pprint(cfg)

    # INIT
    _init_fn = None
    if not args.random_train:
        torch.manual_seed(cfg.TRAIN.RANDOM_SEED)
        torch.cuda.manual_seed(cfg.TRAIN.RANDOM_SEED)
        np.random.seed(cfg.TRAIN.RANDOM_SEED)
        random.seed(cfg.TRAIN.RANDOM_SEED)

        def _init_fn(worker_id):
            np.random.seed(cfg.TRAIN.RANDOM_SEED + worker_id)

    if os.environ.get('ADVENT_DRY_RUN', '0') == '1':
        return

    # LOAD SEGMENTATION NET
    assert osp.exists(
        cfg.TRAIN.RESTORE_FROM), f'Missing init model {cfg.TRAIN.RESTORE_FROM}'
    if cfg.TRAIN.MODEL == 'DeepLabv2':
        model = get_deeplab_v2(num_classes=cfg.NUM_CLASSES,
                               multi_level=cfg.TRAIN.MULTI_LEVEL)
        saved_state_dict = torch.load(cfg.TRAIN.RESTORE_FROM)
        if 'DeepLab_resnet_pretrained_imagenet' in cfg.TRAIN.RESTORE_FROM:
            new_params = model.state_dict().copy()
            for i in saved_state_dict:
                i_parts = i.split('.')
                if not i_parts[1] == 'layer5':
                    new_params['.'.join(i_parts[1:])] = saved_state_dict[i]
            model.load_state_dict(new_params)
        else:
            model.load_state_dict(saved_state_dict)
    else:
        raise NotImplementedError(f"Not yet supported {cfg.TRAIN.MODEL}")
    print('Model loaded')

    # DATALOADERS
    source_dataset = GTA5DataSet(root=cfg.DATA_DIRECTORY_SOURCE,
                                 list_path=cfg.DATA_LIST_SOURCE,
                                 set=cfg.TRAIN.SET_SOURCE,
                                 max_iters=cfg.TRAIN.MAX_ITERS *
                                 cfg.TRAIN.BATCH_SIZE_SOURCE,
                                 crop_size=cfg.TRAIN.INPUT_SIZE_SOURCE,
                                 mean=cfg.TRAIN.IMG_MEAN)
    source_loader = data.DataLoader(source_dataset,
                                    batch_size=cfg.TRAIN.BATCH_SIZE_SOURCE,
                                    num_workers=cfg.NUM_WORKERS,
                                    shuffle=True,
                                    pin_memory=True,
                                    worker_init_fn=_init_fn)

    target_dataset = CityscapesDataSet(root=cfg.DATA_DIRECTORY_TARGET,
                                       list_path=cfg.DATA_LIST_TARGET,
                                       set=cfg.TRAIN.SET_TARGET,
                                       info_path=cfg.TRAIN.INFO_TARGET,
                                       max_iters=cfg.TRAIN.MAX_ITERS *
                                       cfg.TRAIN.BATCH_SIZE_TARGET,
                                       crop_size=cfg.TRAIN.INPUT_SIZE_TARGET,
                                       mean=cfg.TRAIN.IMG_MEAN)
    target_loader = data.DataLoader(target_dataset,
                                    batch_size=cfg.TRAIN.BATCH_SIZE_TARGET,
                                    num_workers=cfg.NUM_WORKERS,
                                    shuffle=True,
                                    pin_memory=True,
                                    worker_init_fn=_init_fn)

    with open(osp.join(cfg.TRAIN.SNAPSHOT_DIR, 'train_cfg.yml'),
              'w') as yaml_file:
        yaml.dump(cfg, yaml_file, default_flow_style=False)

    # UDA TRAINING
    train_domain_adaptation(model, source_loader, target_loader, cfg)
Esempio n. 3
0
def main():
    # LOAD ARGS
    args = get_arguments()
    print("Called with args:")
    print(args)

    assert args.cfg is not None, "Missing cfg file"
    cfg_from_file(args.cfg)
    # auto-generate exp name if not specified
    if cfg.EXP_NAME == "":
        cfg.EXP_NAME = f"{cfg.SOURCE}2{cfg.TARGET}_{cfg.TRAIN.MODEL}_{cfg.TRAIN.DA_METHOD}"

    if args.exp_suffix:
        cfg.EXP_NAME += f"_{args.exp_suffix}"
    # auto-generate snapshot path if not specified
    if cfg.TRAIN.SNAPSHOT_DIR == "":
        cfg.TRAIN.SNAPSHOT_DIR = osp.join(cfg.EXP_ROOT_SNAPSHOT, cfg.EXP_NAME)
    os.makedirs(cfg.TRAIN.SNAPSHOT_DIR, exist_ok=True)
    # tensorboard
    if args.tensorboard:
        if cfg.TRAIN.TENSORBOARD_LOGDIR == "":
            cfg.TRAIN.TENSORBOARD_LOGDIR = osp.join(
                cfg.EXP_ROOT_LOGS, "tensorboard", cfg.EXP_NAME
            )
        os.makedirs(cfg.TRAIN.TENSORBOARD_LOGDIR, exist_ok=True)
        if args.viz_every_iter is not None:
            cfg.TRAIN.TENSORBOARD_VIZRATE = args.viz_every_iter
    else:
        cfg.TRAIN.TENSORBOARD_LOGDIR = ""
    print("Using config:")
    pprint.pprint(cfg)

    # INIT
    _init_fn = None
    if not args.random_train:
        torch.manual_seed(cfg.TRAIN.RANDOM_SEED)
        torch.cuda.manual_seed(cfg.TRAIN.RANDOM_SEED)
        np.random.seed(cfg.TRAIN.RANDOM_SEED)
        random.seed(cfg.TRAIN.RANDOM_SEED)

        def _init_fn(worker_id):
            np.random.seed(cfg.TRAIN.RANDOM_SEED + worker_id)

    if os.environ.get("DADA_DRY_RUN", "0") == "1":
        return

    # LOAD SEGMENTATION NET
    assert osp.exists(
        cfg.TRAIN.RESTORE_FROM
    ), f"Missing init model {cfg.TRAIN.RESTORE_FROM}"
    if cfg.TRAIN.MODEL == "DeepLabv2_depth":
        model = get_deeplab_v2_depth(
            num_classes=cfg.NUM_CLASSES,
            multi_level=cfg.TRAIN.MULTI_LEVEL
        )
        saved_state_dict = torch.load(cfg.TRAIN.RESTORE_FROM)
        if "DeepLab_resnet_pretrained_imagenet" in cfg.TRAIN.RESTORE_FROM:
            new_params = model.state_dict().copy()
            for i in saved_state_dict:
                i_parts = i.split(".")
                if not i_parts[1] == "layer5":
                    new_params[".".join(i_parts[1:])] = saved_state_dict[i]
            model.load_state_dict(new_params)
        else:
            model.load_state_dict(saved_state_dict)
    elif cfg.TRAIN.MODEL == "DeepLabv2":
        model = get_deeplab_v2(
            num_classes=cfg.NUM_CLASSES,
            multi_level=cfg.TRAIN.MULTI_LEVEL
        )
        saved_state_dict = torch.load(cfg.TRAIN.RESTORE_FROM)
        if "DeepLab_resnet_pretrained_imagenet" in cfg.TRAIN.RESTORE_FROM:
            new_params = model.state_dict().copy()
            for i in saved_state_dict:
                i_parts = i.split(".")
                if not i_parts[1] == "layer5":
                    new_params[".".join(i_parts[1:])] = saved_state_dict[i]
            model.load_state_dict(new_params)
        else:
            model.load_state_dict(saved_state_dict)
    else:
        raise NotImplementedError(f"Not yet supported {cfg.TRAIN.MODEL}")
    print("Model loaded")

    # DATALOADERS
    source_dataset = SYNTHIADataSetDepth(
        root=cfg.DATA_DIRECTORY_SOURCE,
        list_path=cfg.DATA_LIST_SOURCE,
        set=cfg.TRAIN.SET_SOURCE,
        num_classes=cfg.NUM_CLASSES,
        max_iters=cfg.TRAIN.MAX_ITERS * cfg.TRAIN.BATCH_SIZE_SOURCE,
        crop_size=cfg.TRAIN.INPUT_SIZE_SOURCE,
        mean=cfg.TRAIN.IMG_MEAN,
        use_depth=cfg.USE_DEPTH,
    )
    source_loader = data.DataLoader(
        source_dataset,
        batch_size=cfg.TRAIN.BATCH_SIZE_SOURCE,
        num_workers=cfg.NUM_WORKERS,
        shuffle=True,
        pin_memory=True,
        worker_init_fn=_init_fn,
    )

    if cfg.TARGET == 'Cityscapes':
        target_dataset = CityscapesDataSet(
            root=cfg.DATA_DIRECTORY_TARGET,
            list_path=cfg.DATA_LIST_TARGET,
            set=cfg.TRAIN.SET_TARGET,
            info_path=cfg.TRAIN.INFO_TARGET,
            max_iters=cfg.TRAIN.MAX_ITERS * cfg.TRAIN.BATCH_SIZE_TARGET,
            crop_size=cfg.TRAIN.INPUT_SIZE_TARGET,
            mean=cfg.TRAIN.IMG_MEAN
        )
    elif cfg.TARGET == 'Mapillary':
        target_dataset = MapillaryDataSet(
            root=cfg.DATA_DIRECTORY_TARGET,
            list_path=cfg.DATA_LIST_TARGET,
            set=cfg.TRAIN.SET_TARGET,
            info_path=cfg.TRAIN.INFO_TARGET,
            max_iters=cfg.TRAIN.MAX_ITERS * cfg.TRAIN.BATCH_SIZE_TARGET,
            crop_size=cfg.TRAIN.INPUT_SIZE_TARGET,
            mean=cfg.TRAIN.IMG_MEAN,
            scale_label=True
        )
    else:
        raise NotImplementedError(f"Not yet supported dataset {cfg.TARGET}")
    target_loader = data.DataLoader(
        target_dataset,
        batch_size=cfg.TRAIN.BATCH_SIZE_TARGET,
        num_workers=cfg.NUM_WORKERS,
        shuffle=True,
        pin_memory=True,
        worker_init_fn=_init_fn,
    )

    with open(osp.join(cfg.TRAIN.SNAPSHOT_DIR, "train_cfg.yml"), "w") as yaml_file:
        yaml.dump(cfg, yaml_file, default_flow_style=False)

    # UDA TRAINING
    if cfg.USE_DEPTH:
        train_domain_adaptation_with_depth(model, source_loader, target_loader, cfg)
    else:
        train_domain_adaptation(model, source_loader, target_loader, cfg)