Esempio n. 1
0
    def _align_waves(self, real_path, synt_path):
        """
        Align two ``wav`` files.

        Return a pair:

        1. a success bool flag
        2. the computed alignment map, that is,
           a list of pairs of floats, each representing
           corresponding time instants
           in the real and synt wave, respectively
           ``[real_time, synt_time]``
        """
        self._log("Aligning waves")
        try:
            self._log("Creating DTWAligner object")
            aligner = DTWAligner(real_path, synt_path, logger=self.logger)
            self._log("Computing MFCC...")
            aligner.compute_mfcc()
            self._log("Computing MFCC... done")
            self._log("Computing path...")
            aligner.compute_path()
            self._log("Computing path... done")
            self._log("Computing map...")
            computed_map = aligner.computed_map
            self._log("Computing map... done")
            self._log("Aligning waves: succeeded")
            return (True, computed_map)
        except Exception as e:
            self._log("Aligning waves: failed")
            self._log(["Message: %s", str(e)])
            return (False, None)
Esempio n. 2
0
 def test_set_synt_wave_mfcc(self):
     af = AudioFileMFCC(self.AUDIO_FILE)
     aligner = DTWAligner(synt_wave_mfcc=af)
     self.assertIsNone(aligner.real_wave_mfcc)
     self.assertIsNotNone(aligner.synt_wave_mfcc)
     self.assertIsNone(aligner.real_wave_path)
     self.assertIsNone(aligner.synt_wave_path)
Esempio n. 3
0
    def _align_waves(self, real_wave_mfcc, synt_wave_mfcc, synt_anchors):
        """
        Align two AudioFileMFCC objects,
        representing WAVE files.

        Return a list of boundary indices.
        """
        self.log(u"Creating DTWAligner...")
        aligner = DTWAligner(real_wave_mfcc,
                             synt_wave_mfcc,
                             rconf=self.rconf,
                             logger=self.logger)
        self.log(u"Creating DTWAligner... done")
        self.log(u"Computing boundary indices...")
        boundary_indices = aligner.compute_boundaries(synt_anchors)
        self.log(u"Computing boundary indices... done")
        return boundary_indices
Esempio n. 4
0
 def test_compute_acm_real_mfcc(self):
     af = AudioFileMFCC(self.AUDIO_FILE)
     aligner = DTWAligner(real_wave_mfcc=af)
     with self.assertRaises(DTWAlignerNotInitialized):
         aligner.compute_accumulated_cost_matrix()
Esempio n. 5
0
 def test_compute_acm_synt_path(self):
     aligner = DTWAligner(synt_wave_path=self.AUDIO_FILE)
     with self.assertRaises(DTWAlignerNotInitialized):
         aligner.compute_accumulated_cost_matrix()
Esempio n. 6
0
 def test_compute_acm_none(self):
     aligner = DTWAligner()
     with self.assertRaises(DTWAlignerNotInitialized):
         aligner.compute_accumulated_cost_matrix()
Esempio n. 7
0
 def test_set_synt_wave_path(self):
     aligner = DTWAligner(synt_wave_path=self.AUDIO_FILE)
     self.assertIsNone(aligner.real_wave_mfcc)
     self.assertIsNotNone(aligner.synt_wave_path)
     self.assertIsNone(aligner.real_wave_path)
     self.assertIsNotNone(aligner.synt_wave_mfcc)
Esempio n. 8
0
 def test_create_aligner(self):
     aligner = DTWAligner()
     self.assertIsNone(aligner.real_wave_mfcc)
     self.assertIsNone(aligner.synt_wave_mfcc)
     self.assertIsNone(aligner.real_wave_path)
     self.assertIsNone(aligner.synt_wave_path)
Esempio n. 9
0
 def test_compute_path_synt_mfcc(self):
     af = AudioFileMFCC(self.AUDIO_FILE)
     aligner = DTWAligner(synt_wave_mfcc=af)
     with self.assertRaises(DTWAlignerNotInitialized):
         aligner.compute_path()
Esempio n. 10
0
 def test_compute_path_synt_path(self):
     aligner = DTWAligner(synt_wave_path=self.AUDIO_FILE)
     with self.assertRaises(DTWAlignerNotInitialized):
         aligner.compute_path()
Esempio n. 11
0
    def _detect_start(self,
                      min_start_length,
                      max_start_length,
                      metric,
                      backwards=False):
        """ Detect start """

        self._log(["Min start length: %.3f", min_start_length])
        self._log(["Max start length: %.3f", max_start_length])
        self._log(["Metric:           %s", metric])
        self._log(["Backwards:        %s", str(backwards)])

        audio_rate = self.text_file.characters / self.audio_file.audio_length
        self._log(["Audio rate:     %.3f", audio_rate])

        self._log("Synthesizing query...")
        tmp_handler, tmp_file_path = tempfile.mkstemp(suffix=".wav",
                                                      dir=gf.custom_tmp_dir())
        synt = Synthesizer(logger=self.logger)
        synt_duration = max_start_length * self.QUERY_FACTOR
        self._log(["Synthesizing %.3f seconds", synt_duration])
        result = synt.synthesize(self.text_file,
                                 tmp_file_path,
                                 quit_after=synt_duration,
                                 backwards=backwards)
        self._log("Synthesizing query... done")

        query_file = AudioFile(tmp_file_path)
        if backwards:
            self._log("Reversing query")
            query_file.reverse()
        self._log("Extracting MFCCs for query...")
        query_file.extract_mfcc(frame_rate=self.frame_rate)
        query_file.clear_data()
        self._log("Extracting MFCCs for query... done")

        self._log("Cleaning up...")
        self._cleanup(tmp_handler, tmp_file_path)
        self._log("Cleaning up... done")

        query_characters = result[2]
        query_len = query_file.audio_length
        query_mfcc = query_file.audio_mfcc
        query_rate = query_characters / query_len

        stretch_factor = max(1, query_rate / audio_rate)
        self._log(["Audio rate:     %.3f", audio_rate])
        self._log(["Query rate:     %.3f", query_rate])
        self._log(["Stretch factor: %.3f", stretch_factor])

        audio_mfcc = self.audio_file.audio_mfcc
        self._log(["Actual audio has %d frames", audio_mfcc.shape[1]])
        audio_mfcc_end_index = int(max_start_length * self.AUDIO_FACTOR *
                                   self.frame_rate)
        self._log(["Limiting audio to first %d frames", audio_mfcc_end_index])
        audio_mfcc_end_index = min(audio_mfcc_end_index, audio_mfcc.shape[1])
        audio_mfcc = audio_mfcc[:, 0:audio_mfcc_end_index]
        self._log(["Limited audio has %d frames", audio_mfcc.shape[1]])

        l, o = audio_mfcc.shape
        l, n = query_mfcc.shape

        # minimum length of a matched interval in the real audio
        stretched_match_minimum_length = int(n * stretch_factor)

        self._log(["Audio has %d frames == %.3f seconds", o, self._i2t(o)])
        self._log(["Query has %d frames == %.3f seconds", n, self._i2t(n)])
        self._log(["Stretch factor:          %.3f", stretch_factor])
        self._log(
            ["Required minimum length: %.3f", stretched_match_minimum_length])
        self._log("Speech intervals:")
        for interval in self.audio_speech:
            self._log([
                "  %d %d == %.3f %.3f",
                self._t2i(interval[0]),
                self._t2i(interval[1]), interval[0], interval[1]
            ])

        admissible_intervals = [
            x for x in self.audio_speech
            if ((x[0] >= min_start_length) and (x[0] <= max_start_length))
        ]
        self._log("AdmissibleSpeech intervals:")
        for interval in admissible_intervals:
            self._log([
                "  %d %d == %.3f %.3f",
                self._t2i(interval[0]),
                self._t2i(interval[1]), interval[0], interval[1]
            ])

        candidates = []
        runs_with_min_length = 0
        runs_no_improvement = 0
        runs_min_distortion = numpy.inf
        runs_min_value = numpy.inf

        for interval in admissible_intervals:
            if runs_no_improvement >= self.MAX_RUNS_NO_IMPROVEMENT:
                self._log("  Breaking: too many runs without improvement")
                break

            if runs_with_min_length >= self.MAX_RUNS_WITH_MIN_LENGTH:
                self._log(
                    "  Breaking: too many runs with minimum required length")
                break

            start_time = interval[0]
            start_index = self._t2i(start_time)
            self._log([
                "Evaluating interval starting at %d == %.3f ", start_index,
                start_time
            ])
            if start_index > o:
                self._log("  Breaking: start index outside audio window")
                break

            req_end_index = start_index + stretched_match_minimum_length
            req_end_time = self._i2t(req_end_index)
            if req_end_index > o:
                self._log(
                    "  Breaking: not enough audio left in shifted window")
                break
            end_index = min(start_index + 2 * n, o)
            end_time = self._i2t(end_index)

            self._log(["  Start   %d == %.3f", start_index, start_time])
            self._log(["  Req end %d == %.3f", req_end_index, req_end_time])
            self._log(["  Eff end %d == %.3f", end_index, end_time])

            audio_mfcc_sub = audio_mfcc[:, start_index:end_index]
            l, m = audio_mfcc_sub.shape

            self._log("Computing DTW...")
            aligner = DTWAligner(None,
                                 None,
                                 frame_rate=self.frame_rate,
                                 logger=self.logger)
            aligner.real_wave_full_mfcc = audio_mfcc_sub
            aligner.synt_wave_full_mfcc = query_mfcc
            aligner.real_wave_length = self._i2t(m)
            aligner.synt_wave_length = self._i2t(n)
            acm = aligner.compute_accumulated_cost_matrix()
            # transpose, so we have an n x m accumulated cost matrix
            acm = acm.transpose()
            last_row = acm[-1, :]
            self._log("Computing DTW... done")

            # find the minimum, but its index must be >= stretched_match_minimum_length
            candidate_argmin_index = numpy.argmin(
                last_row[stretched_match_minimum_length:])
            candidate_length_index = stretched_match_minimum_length + candidate_argmin_index
            candidate_length_time = self._i2t(candidate_length_index)
            candidate_value = last_row[candidate_length_index]
            candidate_end_index = start_index + candidate_length_index
            candidate_end_time = self._i2t(candidate_end_index)
            candidate_distortion = candidate_value / candidate_length_index

            # check if the candidate has minimum length
            if candidate_length_index == stretched_match_minimum_length:
                runs_with_min_length += 1
            else:
                runs_with_min_length = 0

            # check if the candidate improved the global minimum value
            if metric == SDMetric.VALUE:
                if candidate_value < runs_min_value:
                    runs_min_value = candidate_value
                    runs_no_improvement = 0
                else:
                    runs_no_improvement += 1
            if metric == SDMetric.DISTORTION:
                if candidate_distortion < runs_min_distortion:
                    runs_min_distortion = candidate_distortion
                    runs_no_improvement = 0
                else:
                    runs_no_improvement += 1

            # append to the list of candidates
            self._log([
                "    Interval  start:      %d == %.6f", start_index, start_time
            ])
            self._log(
                ["    Interval  end:        %d == %.6f", end_index, end_time])
            self._log([
                "    Candidate start:      %d == %.6f", start_index, start_time
            ])
            self._log([
                "    Candidate end:        %d == %.6f", candidate_end_index,
                candidate_end_time
            ])
            self._log([
                "    Candidate length:     %d == %.6f", candidate_length_index,
                candidate_length_time
            ])
            self._log(["    Candidate value:      %.6f", candidate_value])
            self._log(["    Candidate distortion: %.6f", candidate_distortion])
            candidates.append({
                "start_index": start_index,
                "length": candidate_length_index,
                "value": candidate_value,
                "distortion": candidate_distortion
            })

        # select best candidate and return its start time
        # if we have no best candidate, return 0.0
        best_candidate = self._select_best_candidate(candidates, metric)
        if best_candidate is None:
            return 0.0
        sd_time = self._i2t(max(best_candidate["start_index"], 0))
        self._log(["Returning time %.3f", sd_time])
        return sd_time
Esempio n. 12
0
    def _detect(self, min_length, max_length, tail=False):
        """
        Detect the head or tail within ``min_length`` and ``max_length`` duration.

        If detecting the tail, the real wave MFCC and the query are reversed
        so that the tail detection problem reduces to a head detection problem.

        Return the duration of the head or tail, in seconds.

        :param min_length: estimated minimum length
        :type  min_length: :class:`~aeneas.timevalue.TimeValue`
        :param max_length: estimated maximum length
        :type  max_length: :class:`~aeneas.timevalue.TimeValue`
        :rtype: :class:`~aeneas.timevalue.TimeValue`
        :raises: TypeError: if one of the parameters is not ``None`` or a number
        :raises: ValueError: if one of the parameters is negative
        """
        def _sanitize(value, default, name):
            if value is None:
                value = default
            try:
                value = TimeValue(value)
            except (TypeError, ValueError, InvalidOperation) as exc:
                self.log_exc(u"The value of %s is not a number" % (name), exc, True, TypeError)
            if value < 0:
                self.log_exc(u"The value of %s is negative" % (name), None, True, ValueError)
            return value

        min_length = _sanitize(min_length, self.MIN_LENGTH, "min_length")
        max_length = _sanitize(max_length, self.MAX_LENGTH, "max_length")
        mws = self.rconf.mws
        min_length_frames = int(min_length / mws)
        max_length_frames = int(max_length / mws)
        self.log([u"MFCC window shift s:     %.3f", mws])
        self.log([u"Min start length s:      %.3f", min_length])
        self.log([u"Min start length frames: %d", min_length_frames])
        self.log([u"Max start length s:      %.3f", max_length])
        self.log([u"Max start length frames: %d", max_length_frames])
        self.log([u"Tail?:                   %s", str(tail)])

        self.log(u"Synthesizing query...")
        synt_duration = max_length * self.QUERY_FACTOR
        self.log([u"Synthesizing at least %.3f seconds", synt_duration])
        tmp_handler, tmp_file_path = gf.tmp_file(suffix=u".wav", root=self.rconf[RuntimeConfiguration.TMP_PATH])
        synt = Synthesizer(rconf=self.rconf, logger=self.logger)
        anchors, total_time, synthesized_chars = synt.synthesize(
            self.text_file,
            tmp_file_path,
            quit_after=synt_duration,
            backwards=tail
        )
        self.log(u"Synthesizing query... done")

        self.log(u"Extracting MFCCs for query...")
        query_mfcc = AudioFileMFCC(tmp_file_path, rconf=self.rconf, logger=self.logger)
        self.log(u"Extracting MFCCs for query... done")

        self.log(u"Cleaning up...")
        gf.delete_file(tmp_handler, tmp_file_path)
        self.log(u"Cleaning up... done")

        search_window = max_length * self.AUDIO_FACTOR
        search_window_end = min(int(search_window / mws), self.real_wave_mfcc.all_length)
        self.log([u"Query MFCC length (frames): %d", query_mfcc.all_length])
        self.log([u"Real MFCC length (frames):  %d", self.real_wave_mfcc.all_length])
        self.log([u"Search window end (s):      %.3f", search_window])
        self.log([u"Search window end (frames): %d", search_window_end])

        if tail:
            self.log(u"Tail => reversing real_wave_mfcc and query_mfcc")
            self.real_wave_mfcc.reverse()
            query_mfcc.reverse()

        # NOTE: VAD will be run here, if not done before
        speech_intervals = self.real_wave_mfcc.intervals(speech=True, time=False)
        if len(speech_intervals) < 1:
            self.log(u"No speech intervals, hence no start found")
            if tail:
                self.real_wave_mfcc.reverse()
            return TimeValue("0.000")

        # generate a list of begin indices
        search_end = None
        candidates_begin = []
        for interval in speech_intervals:
            if (interval[0] >= min_length_frames) and (interval[0] <= max_length_frames):
                candidates_begin.append(interval[0])
            search_end = interval[1]
            if search_end >= search_window_end:
                break

        # for each begin index, compute the acm cost
        # to match the query
        # note that we take the min over the last column of the acm
        # meaning that we allow to match the entire query wave
        # against a portion of the real wave
        candidates = []
        for candidate_begin in candidates_begin:
            self.log([u"Candidate interval starting at %d == %.3f", candidate_begin, candidate_begin * mws])
            try:
                rwm = AudioFileMFCC(
                    mfcc_matrix=self.real_wave_mfcc.all_mfcc[:, candidate_begin:search_end],
                    rconf=self.rconf,
                    logger=self.logger
                )
                dtw = DTWAligner(
                    real_wave_mfcc=rwm,
                    synt_wave_mfcc=query_mfcc,
                    rconf=self.rconf,
                    logger=self.logger
                )
                acm = dtw.compute_accumulated_cost_matrix()
                last_column = acm[:, -1]
                min_value = numpy.min(last_column)
                min_index = numpy.argmin(last_column)
                self.log([u"Candidate interval: %d %d == %.3f %.3f", candidate_begin, search_end, candidate_begin * mws, search_end * mws])
                self.log([u"  Min value: %.6f", min_value])
                self.log([u"  Min index: %d == %.3f", min_index, min_index * mws])
                candidates.append((min_value, candidate_begin, min_index))
            except Exception as exc:
                self.log_exc(u"An unexpected error occurred while running _detect", exc, False, None)

        # reverse again the real wave
        if tail:
            self.log(u"Tail => reversing real_wave_mfcc again")
            self.real_wave_mfcc.reverse()

        # return
        if len(candidates) < 1:
            self.log(u"No candidates found")
            return TimeValue("0.000")
        self.log(u"Candidates:")
        for candidate in candidates:
            self.log([u"  Value: %.6f Begin Time: %.3f Min Index: %d", candidate[0], candidate[1] * mws, candidate[2]])
        best = sorted(candidates)[0][1]
        self.log([u"Best candidate: %d == %.3f", best, best * mws])
        return best * mws