def test_execute(self):
        # Loads and prepares the graph
        res1 = AssignmentResults()
        res1.prepare(self.g, self.matrix)
        assig1 = allOrNothing(self.matrix, self.g, res1)
        assig1.execute()

        res2 = AssignmentResults()
        res2.prepare(self.g, self.matrix2)
        assig2 = allOrNothing(self.matrix2, self.g, res2)
        assig2.execute()

        load1 = res1.get_load_results()
        load2 = res2.get_load_results()

        self.assertEqual(list(load1.matrix_tot * 2), list(load2.matrix_tot),
                         "Something wrong with the AoN")
class DesireLinesProcedure(WorkerThread):
    def __init__(self, parentThread, layer: str, id_field: int,
                 matrix: AequilibraeMatrix, matrix_hash: dict,
                 dl_type: str) -> None:
        WorkerThread.__init__(self, parentThread)
        self.layer = layer
        self.id_field = id_field
        self.matrix = matrix
        self.dl_type = dl_type
        self.error = None
        self.matrix_hash = matrix_hash
        self.report = []
        self.logger = logging.getLogger('aequilibrae')
        self.nodes_to_indices = {
            matrix.index[x]: x
            for x in range(matrix.zones)
        }
        self.python_version = (8 * struct.calcsize("P"))

        if error:
            self.error = 'Scipy and/or Numpy not installed'
            self.report.append(self.error)
        self.procedure = "ASSIGNMENT"

    def doWork(self):
        if self.error is None:
            # In case we have only one class
            unnasigned = 0
            classes = self.matrix.matrix_view.shape[2]

            layer = get_vector_layer_by_name(self.layer)
            idx = layer.dataProvider().fieldNameIndex(self.id_field)
            feature_count = layer.featureCount()
            self.desire_lines.emit(('job_size_dl', feature_count))

            all_centroids = {}
            for P, feat in enumerate(layer.getFeatures()):
                geom = feat.geometry()
                if geom is not None:
                    point = list(geom.centroid().asPoint())
                    centroid_id = feat.attributes()[idx]
                    all_centroids[centroid_id] = point
                self.desire_lines.emit(('jobs_done_dl', P))
                self.desire_lines.emit(('text_dl', "Loading Layer Features: " +
                                        str(P) + "/" + str(feature_count)))

            # Creating resulting layer
            EPSG_code = int(layer.crs().authid().split(":")[1])

            desireline_layer = QgsVectorLayer(
                "LineString?crs=epsg:" + str(EPSG_code), self.dl_type,
                "memory")
            dlpr = desireline_layer.dataProvider()
            base_dl_fields = [
                QgsField("link_id", QVariant.Int),
                QgsField("A_Node", QVariant.Int),
                QgsField("B_Node", QVariant.Int),
                QgsField("direct", QVariant.Int),
                QgsField("distance", QVariant.Double)
            ]

            if self.dl_type == "DesireLines":
                max_zone = self.matrix.index[:].max().astype(np.int64) + 1
                items = [(i, j[0], j[1]) for i, j in all_centroids.items()
                         if i < max_zone]
                coords = np.array(items)

                coord_index = np.zeros((max_zone, 2))
                coord_index[coords[:, 0].astype(np.int64), 0] = coords[:, 1]
                coord_index[coords[:, 0].astype(np.int64), 1] = coords[:, 2]

                self.desire_lines.emit(
                    ('text_dl', "Manipulating matrix indices"))
                zones = self.matrix.index[:].shape[0]
                a = np.array(self.matrix.index[:], np.int64)
                ij, ji = np.meshgrid(a, a, sparse=False, indexing='ij')
                ij = ij.flatten()
                ji = ji.flatten()

                arrays = [ij, ji]

                self.desire_lines.emit(('text_dl', "Collecting all matrices"))
                self.desire_lines.emit(
                    ('job_size_dl', len(self.matrix.view_names)))

                total_mat = np.zeros((zones, zones), np.float64)
                for i, mat in enumerate(self.matrix.view_names):
                    m = self.matrix.get_matrix(mat)
                    total_mat += m
                    arrays.append(m.flatten())
                    self.desire_lines.emit(('jobs_done_dl', i + 1))

                # Eliminates the cells for which we don't have geography
                self.desire_lines.emit(
                    ('text_dl', "Filtering zones with no geography available"))
                zones_with_no_geography = [
                    x for x in self.matrix.index[:] if x not in all_centroids
                ]
                if zones_with_no_geography:
                    self.desire_lines.emit(
                        ('job_size_dl', len(zones_with_no_geography)))
                for k, z in enumerate(zones_with_no_geography):
                    i = self.matrix.matrix_hash[z]
                    t = np.nansum(total_mat[i, :]) + np.nansum(total_mat[:, i])
                    unnasigned += t
                    self.report.append(
                        'Zone {} does not have a corresponding centroid/zone. Total flow {}'
                        .format(z, t))
                    total_mat[i, :] = 0
                    total_mat[:, i] = 0
                    self.desire_lines.emit(('jobs_done_dl', k + 1))

                self.desire_lines.emit(
                    ('text_dl', "Filtering down to OD pairs with flows"))
                field_names = [x for x in self.matrix.view_names]
                nonzero = np.nonzero(total_mat.flatten())
                arrays = np.vstack(arrays).transpose()
                arrays = arrays[nonzero, :]
                arrays = arrays.reshape(arrays.shape[1], arrays.shape[2])

                base_types = [(x, np.float64) for x in ['from', 'to']]
                base_types = base_types + [(x + '_AB', np.float64)
                                           for x in field_names]

                dtypes_ab = [(x, np.int64)
                             for x in ['from', 'to']] + [(x + '_AB', float)
                                                         for x in field_names]
                dtypes_ba = [(x, np.int64)
                             for x in ['to', 'from']] + [(x + '_BA', float)
                                                         for x in field_names]

                ab_mat = np.array(arrays[arrays[:, 0] > arrays[:, 1], :])
                ba_mat = np.array(arrays[arrays[:, 0] < arrays[:, 1], :])

                flows_ab = ab_mat.view(base_types)
                flows_ab = flows_ab.reshape(flows_ab.shape[:-1])
                flows_ab = flows_ab.astype(dtypes_ab)

                flows_ba = ba_mat.view(base_types)
                flows_ba = flows_ba.reshape(flows_ba.shape[:-1])
                flows_ba = flows_ba.astype(dtypes_ba)

                defaults1 = {x + '_AB': 0.0 for x in field_names}
                defaults = {x + '_BA': 0.0 for x in field_names}
                defaults = {**defaults, **defaults1}

                self.desire_lines.emit(
                    ('text_dl', "Concatenating AB & BA flows"))
                flows = rfn.join_by(['from', 'to'],
                                    flows_ab,
                                    flows_ba,
                                    jointype='outer',
                                    defaults=defaults,
                                    usemask=True,
                                    asrecarray=True)
                flows = flows.filled()
                flows_ab = 0
                flows_ba = 0

                for f in flows.dtype.names[2:]:
                    base_dl_fields.extend([QgsField(f, QVariant.Double)])

                dlpr.addAttributes(base_dl_fields)
                desireline_layer.updateFields()

                self.desire_lines.emit(('text_dl', "Creating Desire Lines"))
                self.desire_lines.emit(('job_size_dl', flows.shape[0]))
                all_features = []
                for i, rec in enumerate(flows):
                    a_node = rec[0]
                    b_node = rec[1]

                    a_point = QgsPointXY(*all_centroids[a_node])
                    b_point = QgsPointXY(*all_centroids[b_node])
                    dist = QgsGeometry().fromPointXY(a_point).distance(
                        QgsGeometry().fromPointXY(b_point))
                    feature = QgsFeature()
                    feature.setGeometry(
                        QgsGeometry.fromPolylineXY([a_point, b_point]))

                    attrs = [i + 1, int(a_node), int(b_node), 0, dist]
                    attrs.extend([float(x) for x in list(rec)[2:]])
                    feature.setAttributes(attrs)
                    all_features.append(feature)
                    self.desire_lines.emit(('jobs_done_dl', i))
                if unnasigned > 0:
                    self.report.append(
                        'Total non assigned flows (not counting intrazonals):'
                        + str(unnasigned))

                if flows.shape[0] > 1:
                    a = dlpr.addFeatures(all_features)
                    self.result_layer = desireline_layer
                else:
                    self.report.append('Nothing to show')

            elif self.dl_type == "DelaunayLines":

                for f in self.matrix.view_names:
                    base_dl_fields.extend([
                        QgsField(f + '_ab', QVariant.Double),
                        QgsField(f + '_ba', QVariant.Double),
                        QgsField(f + '_tot', QVariant.Double)
                    ])

                dlpr.addAttributes(base_dl_fields)
                desireline_layer.updateFields()

                self.desire_lines.emit(
                    ('text_dl', "Building Delaunay dataset"))
                points = []
                node_id_in_delaunay_results = {}
                i = 0
                self.desire_lines.emit(('job_size_dl', len(all_centroids)))
                for k, v in all_centroids.items():
                    self.desire_lines.emit(('jobs_done_dl', i))
                    points.append(v)
                    node_id_in_delaunay_results[i] = k
                    i += 1

                self.desire_lines.emit(
                    ('text_dl', "Computing Delaunay Triangles"))
                tri = Delaunay(np.array(points))

                # We process all the triangles to only get each edge once
                self.desire_lines.emit(
                    ('text_dl', "Building Delaunay Network: Collecting Edges"))
                edges = []
                if self.python_version == 32:
                    all_edges = tri.vertices
                else:
                    all_edges = tri.simplices

                self.desire_lines.emit(('job_size_dl', len(all_edges)))

                for j, triangle in enumerate(all_edges):
                    self.desire_lines.emit(('jobs_done_dl', j))
                    links = list(itertools.combinations(triangle, 2))
                    for i in links:
                        edges.append([min(i[0], i[1]), max(i[0], i[1])])

                self.desire_lines.emit(
                    ('text_dl',
                     "Building Delaunay Network: Getting unique edges"))
                edges = OrderedDict((str(x), x) for x in edges).values()

                # Writing Delaunay layer
                self.desire_lines.emit(
                    ('text_dl', "Building Delaunay Network: Assembling Layer"))

                desireline_link_id = 1
                data = []
                dl_ids_on_links = {}
                self.desire_lines.emit(('job_size_dl', len(edges)))
                for j, edge in enumerate(edges):
                    self.desire_lines.emit(('jobs_done_dl', j))
                    a_node = node_id_in_delaunay_results[edge[0]]
                    a_point = all_centroids[a_node]
                    a_point = QgsPointXY(a_point[0], a_point[1])
                    b_node = node_id_in_delaunay_results[edge[1]]
                    b_point = all_centroids[b_node]
                    b_point = QgsPointXY(b_point[0], b_point[1])
                    dist = QgsGeometry().fromPointXY(a_point).distance(
                        QgsGeometry().fromPointXY(b_point))
                    line = []
                    line.append(desireline_link_id)
                    line.append(a_node)
                    line.append(b_node)
                    line.append(dist)
                    line.append(dist)
                    line.append(0)
                    data.append(line)
                    dl_ids_on_links[desireline_link_id] = [
                        a_node, b_node, 0, dist
                    ]
                    desireline_link_id += 1

                self.desire_lines.emit(('text_dl', "Building graph"))
                network = np.asarray(data)
                del data

                # types for the network
                self.graph = Graph()
                itype = self.graph.default_types('int')
                ftype = self.graph.default_types('float')
                all_types = [itype, itype, itype, ftype, ftype, np.int8]
                all_titles = [
                    'link_id', 'a_node', 'b_node', 'distance_ab',
                    'distance_ba', 'direction'
                ]
                dt = [(t, d) for t, d in zip(all_titles, all_types)]
                self.graph.network = np.zeros(network.shape[0], dtype=dt)

                for k, t in enumerate(dt):
                    self.graph.network[t[0]] = network[:, k].astype(t[1])
                del network

                self.graph.type_loaded = 'NETWORK'
                self.graph.status = 'OK'
                self.graph.network_ok = True
                self.graph.prepare_graph(self.matrix.index.astype(np.int64))
                self.graph.set_graph(cost_field="distance")
                self.graph.set_blocked_centroid_flows(False)

                self.results = AssignmentResults()
                self.results.prepare(self.graph, self.matrix)
                self.desire_lines.emit(('text_dl', "Assigning demand"))
                self.desire_lines.emit(
                    ('job_size_dl', self.matrix.index.shape[0]))

                assigner = allOrNothing(self.matrix, self.graph, self.results)
                assigner.execute()
                self.report = assigner.report
                print(self.results.link_loads)
                self.desire_lines.emit(('text_dl', "Collecting results"))
                self.desire_lines.emit(('text_dl', "Building resulting layer"))
                features = []
                max_edges = len(edges)
                self.desire_lines.emit(('job_size_dl', max_edges))
                link_loads = self.results.get_load_results()
                for i, link_id in enumerate(link_loads.index):
                    self.desire_lines.emit(('jobs_done_dl', i))
                    a_node, b_node, direct, dist = dl_ids_on_links[link_id]

                    attr = [int(link_id), a_node, b_node, direct, dist]

                    a_point = all_centroids[a_node]
                    a_point = QgsPointXY(a_point[0], a_point[1])
                    b_point = all_centroids[b_node]
                    b_point = QgsPointXY(b_point[0], b_point[1])

                    feature = QgsFeature()
                    feature.setGeometry(
                        QgsGeometry.fromPolylineXY([a_point, b_point]))

                    for c in self.matrix.view_names:
                        attr.extend([
                            float(link_loads.data[c + '_ab'][i]),
                            float(link_loads.data[c + '_ba'][i]),
                            float(link_loads.data[c + '_tot'][i])
                        ])
                    feature.setAttributes(attr)
                    features.append(feature)
                a = dlpr.addFeatures(features)
                self.result_layer = desireline_layer

        self.desire_lines.emit(('finished_desire_lines_procedure', 0))