Esempio n. 1
0
def biasf(df_aeq, xtab):
    """
     args:
         df (dataframe): Recibe el data frame que tiene los features sobre los que queremos medir la disparidad
     returns:
         -
    """
    bias = Bias()
    bdf = bias.get_disparity_predefined_groups(
        xtab,
        original_df=df_aeq,
        ref_groups_dict={'reference_group': 'High'},
        alpha=0.05,
        check_significance=True,
        mask_significance=True)

    ## Storing metadata
    aq_metadata["value_k"] = list(bdf["k"])[0]

    disparities = bdf[['attribute_name', 'attribute_value'] +
                      bias.list_disparities(bdf)].round(2)

    majority_bdf = bias.get_disparity_major_group(xtab, original_df=df_aeq)
    disparities_majority = majority_bdf[
        ['attribute_name', 'attribute_value'] +
        bias.list_disparities(majority_bdf)].round(2)

    min_bdf = bias.get_disparity_min_metric(xtab, original_df=df_aeq)
    disparities_min = min_bdf[['attribute_name', 'attribute_value'] +
                              bias.list_disparities(min_bdf)].round(2)

    return bdf, disparities, disparities_majority, disparities_min, bias
Esempio n. 2
0
def get_bias_metrics(data):
    bias = Bias()
    group = Group()
    old_columns = ['predictions', 'loan_status', 'forty_plus_indicator']
    new_columns = ['score', 'label_value', 'forty_plus_indicator']
    scored_data = data.loc[:, old_columns]
    renamer = dict(zip(scored_data.columns, new_columns))
    scored_data = scored_data.rename(columns = renamer)

    data_processed, _ = preprocess_input_df(scored_data)
    xtab, _ = group.get_crosstabs(data_processed)
    attribute_columns = ['attribute_name', 'attribute_value']
    absolute_metrics = group.list_absolute_metrics(xtab)
    absolute_metrics_df = xtab[attribute_columns + absolute_metrics].round(2)
    bias_df = bias.get_disparity_predefined_groups(
        xtab,
        original_df=data_processed,
        ref_groups_dict={'forty_plus_indicator': 'Under Forty'},
        alpha=0.05, mask_significance=True
    )
    calculated_disparities = bias.list_disparities(bias_df)
    disparity_metrics_df = bias_df[attribute_columns + calculated_disparities]
    abs_metrics = absolute_metrics_df.where(pd.notnull(absolute_metrics_df),
                                            None).to_dict(orient='records')
    disp_metrics = disparity_metrics_df.where(pd.notnull(disparity_metrics_df),
                                            None).to_dict(orient='records')
    return dict(absolute_metrics = abs_metrics,
                disparity_metrics = disp_metrics)
Esempio n. 3
0
def metrics(data):

    data = pd.DataFrame(data)

    # To measure Bias towards gender, filter DataFrame
    # to "score", "label_value" (ground truth), and
    # "gender" (protected attribute)
    data_scored = data[["score", "label_value", "gender"]]

    # Process DataFrame
    data_scored_processed, _ = preprocess_input_df(data_scored)

    # Group Metrics
    g = Group()
    xtab, _ = g.get_crosstabs(data_scored_processed)

    # Absolute metrics, such as 'tpr', 'tnr','precision', etc.
    absolute_metrics = g.list_absolute_metrics(xtab)

    # DataFrame of calculated absolute metrics for each sample population group
    absolute_metrics_df = xtab[['attribute_name', 'attribute_value'] +
                               absolute_metrics].round(2)

    # For example:
    """
        attribute_name  attribute_value     tpr     tnr  ... precision
    0   gender          female              0.60    0.88 ... 0.75
    1   gender          male                0.49    0.90 ... 0.64
    """

    # Bias Metrics
    b = Bias()

    # Disparities calculated in relation gender for "male" and "female"
    bias_df = b.get_disparity_predefined_groups(
        xtab,
        original_df=data_scored_processed,
        ref_groups_dict={'gender': 'male'},
        alpha=0.05,
        mask_significance=True)

    # Disparity metrics added to bias DataFrame
    calculated_disparities = b.list_disparities(bias_df)

    disparity_metrics_df = bias_df[['attribute_name', 'attribute_value'] +
                                   calculated_disparities]

    # For example:
    """
        attribute_name	attribute_value    ppr_disparity   precision_disparity
    0   gender          female             0.714286        1.41791
    1   gender          male               1.000000        1.000000
    """

    output_metrics_df = disparity_metrics_df  # or absolute_metrics_df

    # Output a JSON object of calculated metrics
    yield output_metrics_df.to_dict(orient="records")
Esempio n. 4
0
def bias(df):
    """
    Function to print bias metrics. 
    :param df: Aequitas-compliant dataframe.  
    """
    
    print("Módulo de Sesgo")
    print("-"*30)
    bias_ = Bias()
    g = Group()
    xtab, atts = g.get_crosstabs(df, attr_cols=["delegacion"])
    absolute_metrics = g.list_absolute_metrics(xtab)
    bdf = bias_.get_disparity_predefined_groups(xtab, original_df = df, 
                                ref_groups_dict = {'delegacion': 'IZTAPALAPA'},
                                alpha=0.05)
    print("Disparities:")
    print(bdf[['attribute_name', 'attribute_value'] + bias_.list_disparities(bdf)].round(2))
    print("Minority Analysis:")
    min_bdf = bias_.get_disparity_min_metric(xtab, original_df=df)
    print(min_bdf[['attribute_name', 'attribute_value'] +  bias_.list_disparities(min_bdf)].round(2))
    print("Majority Analysis:")
    majority_bdf = bias_.get_disparity_major_group(xtab, original_df=df)
    print(majority_bdf[['attribute_name', 'attribute_value'] +  bias_.list_disparities(majority_bdf)].round(2))
def tabla_metrica_sesgo(data, attr_ref):
    # Calculamos las métricas de grupo
    g = Group()
    xtab, _ = g.get_crosstabs(data)
    # Calculamos las metricas de sesgo
    b = Bias()
    # Establecemos los atributos de referencia
    bdf = b.get_disparity_predefined_groups(xtab,
                                            original_df=data,
                                            ref_groups_dict=attr_ref,
                                            alpha=0.05,
                                            mask_significance=True)
    calculated_disparities = b.list_disparities(bdf)
    disparity_significance = b.list_significance(bdf)
    tabla_sesgo = bdf[['attribute_name', 'attribute_value'] +
                      calculated_disparities + disparity_significance]
    return tabla_sesgo
Esempio n. 6
0
def aequitas_bias(df, score_column, label_column, protected_class, reference_group):
    
    # To measure Bias towards protected_class, filter DataFrame
    # to score, label (ground truth), and protected class
    data_scored = df[
        [
            score_column,
            label_column,
            protected_class,
        ]
    ]

    data_scored = data_scored.rename(columns={label_column: "label_value"})

    # Process DataFrame
    data_scored_processed, _ = preprocess_input_df(data_scored)

    # Bias Metrics
    b = Bias()
    g = Group()
    xtab, _ = g.get_crosstabs(data_scored_processed)

    # Disparities calculated in relation <protected_class> for class groups
    bias_df = b.get_disparity_predefined_groups(
        xtab,
        original_df=data_scored_processed,
        ref_groups_dict={protected_class: reference_group},
        alpha=0.05,
        mask_significance=True,
    )

    # Disparity metrics added to bias DataFrame
    calculated_disparities = b.list_disparities(bias_df)

    disparity_metrics_df = bias_df[
        ["attribute_name", "attribute_value"] + calculated_disparities
    ]

    # For example:
    """
        attribute_name	attribute_value    ppr_disparity   precision_disparity
    0   gender          female             0.714286        1.41791
    1   gender          male               1.000000        1.000000
    """

    return disparity_metrics_df
Esempio n. 7
0
def bias(df_aeq, xtab):
    """
     args:
         df (dataframe): Recibe el data frame que tiene los features sobre los que queremos medir la disparidad
     returns:
         -
    """
    bias = Bias()
    bdf = bias.get_disparity_predefined_groups(
        xtab,
        original_df=df_aeq,
        ref_groups_dict={'delegacion_inicio': 'IZTAPALAPA'},
        alpha=0.05,
        check_significance=True,
        mask_significance=True)
    bdf[['attribute_name', 'attribute_value'] +
        bias.list_disparities(bdf)].round(2)
Esempio n. 8
0
def get_bias_metrics(data):
    # To measure Bias towards gender, filter DataFrame
    # to "score", "label_value" (ground truth), and
    # "gender" (protected attribute)
    data_scored = data[["score", "label_value", "gender"]]

    # Process DataFrame
    data_scored_processed, _ = preprocess_input_df(data_scored)

    # Group Metrics
    g = Group()
    xtab, _ = g.get_crosstabs(data_scored_processed)

    # Absolute metrics, such as 'tpr', 'tnr','precision', etc.
    absolute_metrics = g.list_absolute_metrics(xtab)

    # DataFrame of calculated absolute metrics for each sample population group
    absolute_metrics_df = xtab[["attribute_name", "attribute_value"] +
                               absolute_metrics].round(2)

    # Bias Metrics
    b = Bias()

    # Disparities calculated in relation gender for "male" and "female"
    bias_df = b.get_disparity_predefined_groups(
        xtab,
        original_df=data_scored_processed,
        ref_groups_dict={"gender": "male"},
        alpha=0.05,
        mask_significance=True,
    )

    # Disparity metrics added to bias DataFrame
    calculated_disparities = b.list_disparities(bias_df)

    disparity_metrics_df = bias_df[["attribute_name", "attribute_value"] +
                                   calculated_disparities]

    output_metrics_df = disparity_metrics_df  # or absolute_metrics_df

    # Output a JSON object of calculated metrics
    return output_metrics_df.to_dict(orient="records")
Esempio n. 9
0
def get_fpr_disparity(df, protected_attribute):
     g = Group()
     xtab, _ = g.get_crosstabs(df)

     df_count = df[['distance', 'score']].groupby(['distance']).agg(['count'])
     get_largest_cat = df_count[('score')].sort_values(['count'], ascending = False).index[0]

     b = Bias()
     bdf = b.get_disparity_predefined_groups(xtab, original_df=df,
      ref_groups_dict={'originwac':df[:1].originwac[0],'distance':get_largest_cat},
      alpha=0.05, mask_significance=True)
     calculated_disparities = b.list_disparities(bdf)
     disparity_significance = b.list_significance(bdf)
     majority_bdf = b.get_disparity_major_group(xtab, original_df=df, mask_significance=True)
     results = majority_bdf[['attribute_name', 'attribute_value'] + \
     calculated_disparities + disparity_significance]

     res_distance = results[results.attribute_name ==protected_attribute]
     values= res_distance.attribute_value.tolist()
     disparity = res_distance.fpr_disparity.tolist()
     bias_result = values + disparity
     return bias_result
Esempio n. 10
0
def fairness(df):
    """
    Genera todo el módulo de Equidad
    """
    print("Módulo de Equidad")
    print("-"*30)
    f = Fairness()
    bias_ = Bias()
    g = Group()
    xtab, atts = g.get_crosstabs(df, attr_cols=["delegacion"])
    absolute_metrics = g.list_absolute_metrics(xtab)
    bdf = bias_.get_disparity_predefined_groups(xtab, original_df = df, 
                                ref_groups_dict = {'delegacion': 'IZTAPALAPA'},
                                alpha=0.05)
    fdf = f.get_group_value_fairness(bdf)
    parity_determinations = f.list_parities(fdf)
    print("Imprimiendo tabla de métricas (conteos en frecuencias):")
    print(fdf[['attribute_name', 'attribute_value'] + absolute_metrics + bias_.list_disparities(fdf) + parity_determinations].round(2))
    print("Impriendo métricas generales")
    gof = f.get_overall_fairness(fdf)
    print(gof)
    print("Aequitas analysis completed.")
    print("-"*30)
Esempio n. 11
0
def get_bias_metrics(data):
    bias = Bias()
    group = Group()
    old_columns = ['predictions', 'loan_status', 'forty_plus_indicator']
    new_columns = ['score', 'label_value', 'forty_plus_indicator']
    scored_data = data.loc[:, old_columns]
    renamer = dict(zip(scored_data.columns, new_columns))
    scored_data = scored_data.rename(columns=renamer)

    data_processed, _ = preprocess_input_df(scored_data)
    xtab, _ = group.get_crosstabs(data_processed)
    attribute_columns = ['attribute_name', 'attribute_value']
    absolute_metrics = group.list_absolute_metrics(xtab)
    absolute_metrics_df = xtab[attribute_columns + absolute_metrics].round(2)
    bias_df = bias.get_disparity_predefined_groups(
        xtab,
        original_df=data_processed,
        ref_groups_dict={'forty_plus_indicator': 'Under Forty'},
        alpha=0.05,
        mask_significance=True)
    calculated_disparities = bias.list_disparities(bias_df)
    disparity_metrics_df = bias_df[attribute_columns + calculated_disparities]
    abs_metrics = absolute_metrics_df.where(pd.notnull(absolute_metrics_df),
                                            None).to_dict(orient='records')
    disp_metrics = disparity_metrics_df.where(pd.notnull(disparity_metrics_df),
                                              None).to_dict(orient='records')

    return {
        "attributeAudited":
        "forty_plus_indicator",
        "referenceGroup":
        "Under Forty",
        "fairnessThreshold":
        "80%",
        "fairnessMeasures": [{
            "label": "Predicted Positive Group Rate Parity",
            "result": "Passed",
            "group": "Over Forty",
            "disparity": disp_metrics[0]['pprev_disparity']
        }, {
            "label": "Predicted Positive Rate Parity",
            "result": "Failed",
            "group": "Over Forty",
            "disparity": disp_metrics[0]['ppr_disparity']
        }, {
            "label":
            "Proportional Parity",
            "result":
            "Passed",
            "group":
            "Over Forty",
            "disparity":
            disp_metrics[0]['precision_disparity']
        }, {
            "label": "False Positive Rate Parity",
            "result": "Passed",
            "group": "Over Forty",
            "disparity": disp_metrics[0]['fpr_disparity']
        }, {
            "label": "False Discovery Rate Parity",
            "result": "Passed",
            "group": "Over Forty",
            "disparity": disp_metrics[0]['fdr_disparity']
        }, {
            "label": "False Negative Rate Parity",
            "result": "Passed",
            "group": "Over Forty",
            "disparity": disp_metrics[0]['fnr_disparity']
        }, {
            "label": "False Omission Rate Parity",
            "result": "Passed",
            "group": "Over Forty",
            "disparity": disp_metrics[0]['for_disparity']
        }]
    }
Esempio n. 12
0
    p = aqp.plot_group_metric_all(xtab,
                                  metrics=['ppr', 'pprev', 'fnr', 'fpr'],
                                  ncols=4)

    # Calculamos las metricas de sesgo
    b = Bias()
    # Establecemos los atributos de referencia
    bdf = b.get_disparity_predefined_groups(xtab,
                                            original_df=dataset,
                                            ref_groups_dict={
                                                'race': 'White',
                                                'sex': 'Male'
                                            },
                                            alpha=0.05,
                                            mask_significance=True)
    calculated_disparities = b.list_disparities(bdf)
    disparity_significance = b.list_significance(bdf)
    # Mostramos la tabla de metricas de sesgo
    print(bdf[['attribute_name', 'attribute_value'] + calculated_disparities +
              disparity_significance])

    # Plots de disparidad
    #aqp.plot_disparity(bdf, group_metric='fpr_disparity', attribute_name='race', significance_alpha=0.05)
    #j = aqp.plot_disparity_all(bdf, metrics=['precision_disparity', 'fpr_disparity'], attributes=['age_cat'], significance_alpha=0.05)

    # Definimos las medidas de equidad a partir de la tabla de metricas de sesgo
    f = Fairness()
    # Establecemos el valor del umbral con la variable tau
    fdf = f.get_group_value_fairness(bdf, tau=0.8)
    #parity_detrminations = f.list_parities(fdf)
    # Tabla con si se cumplen las medidas de equidad para cada atributo
def run_aequitas(predictions_data_path):
    '''
	Check for False negative rate, chances of certain group missing out on assistance using aequitas toolkit
	The functions transform the data to make it aequitas complaint and checks for series of bias and fairness metrics
	Input: model prediction path for the selected model (unzip the selected file to run)
	Output: plots saved in charts folder
	'''

    best_model_pred = pd.read_csv(predictions_data_path)

    # Transform data for aquetias module compliance
    aqc = [
        'Other', 'White', 'African American', 'Asian', 'Hispanic',
        'American Indian'
    ]
    aqcol = [
        'White alone_scale', 'Black/AfAmer alone_scale',
        'AmInd/Alaskn alone_scale', 'Asian alone_scale', 'HI alone_scale',
        'Some other race alone_scale', 'Hispanic or Latino_scale'
    ]
    display(aqcol)
    aqcol_label = [
        'no_renew_nextpd', 'pred_class_10%',
        'Median household income (1999 dollars)_scale'
    ] + aqcol
    aqus = best_model_pred[aqcol_label]
    print('Creating classes for racial and income distribution', '\n')

    # Convert to binary
    bin_var = [
        'no_renew_nextpd',
        'pred_class_10%',
    ]
    for var in bin_var:
        aqus[var] = np.where(aqus[var] == True, 1, 0)
    # Rename
    aqus.rename(columns={
        'no_renew_nextpd': 'label_value',
        'pred_class_10%': 'score'
    },
                inplace=True)

    print('Define majority rule defined on relative proportion of the class',
          '\n')
    aqus['race'] = aqus[aqcol].idxmax(axis=1)
    # Use quantile income distribution
    aqus['income'] = pd.qcut(
        aqus['Median household income (1999 dollars)_scale'],
        3,
        labels=["rich", "median", "poor"])

    # Final form
    aqus.drop(aqcol, axis=1, inplace=True)
    aqus.drop(['Median household income (1999 dollars)_scale'],
              axis=1,
              inplace=True)
    aq = aqus.reset_index()
    aq.rename(columns={'index': 'entity_id'}, inplace=True)
    aq['race'] = aq['race'].replace({
        'Some other race alone_scale':
        'Other',
        'White alone_scale':
        'White',
        'Black/AfAmer alone_scale':
        'African American',
        'Asian alone_scale':
        'Asian',
        'HI alone_scale':
        'Hispanic',
        'AmInd/Alaskn alone_scale':
        'American Indian'
    })

    # Consolidate types
    aq['income'] = aq['income'].astype(object)
    aq['entity_id'] = aq['entity_id'].astype(object)
    aq['score'] = aq['score'].astype(object)
    aq['label_value'] = aq['label_value'].astype(object)

    # Distribuion of categories
    aq_palette = sns.diverging_palette(225, 35, n=2)
    by_race = sns.countplot(x="race", data=aq[aq.race.isin(aqc)])
    by_race.set_xticklabels(by_race.get_xticklabels(), rotation=40, ha="right")
    plt.savefig('charts/Racial distribution in data.png')

    # Primary distribuion against score
    aq_palette = sns.diverging_palette(225, 35, n=2)
    by_race = sns.countplot(x="race",
                            hue="score",
                            data=aq[aq.race.isin(aqc)],
                            palette=aq_palette)
    by_race.set_xticklabels(by_race.get_xticklabels(), rotation=40, ha="right")
    # Race
    plt.savefig('charts/race_score.png')
    # Income
    by_inc = sns.countplot(x="income",
                           hue="score",
                           data=aq,
                           palette=aq_palette)
    plt.savefig('charts/income_score.png')

    # Set Group
    g = Group()
    xtab, _ = g.get_crosstabs(aq)

    # False Negative Rates
    aqp = Plot()
    fnr = aqp.plot_group_metric(xtab, 'fnr', min_group_size=0.05)
    p = aqp.plot_group_metric_all(xtab,
                                  metrics=['ppr', 'pprev', 'fnr', 'fpr'],
                                  ncols=4)
    p.savefig('charts/eth_metrics.png')

    # Bias with respect to white rich category
    b = Bias()
    bdf = b.get_disparity_predefined_groups(xtab,
                                            original_df=aq,
                                            ref_groups_dict={
                                                'race': 'White',
                                                'income': 'rich'
                                            },
                                            alpha=0.05,
                                            mask_significance=True)
    bdf.style
    calculated_disparities = b.list_disparities(bdf)
    disparity_significance = b.list_significance(bdf)
    aqp.plot_disparity(bdf,
                       group_metric='fpr_disparity',
                       attribute_name='race',
                       significance_alpha=0.05)
    plt.savefig('charts/disparity.png')

    # Fairness
    hbdf = b.get_disparity_predefined_groups(xtab,
                                             original_df=aq,
                                             ref_groups_dict={
                                                 'race': 'African American',
                                                 'income': 'poor'
                                             },
                                             alpha=0.05,
                                             mask_significance=False)
    majority_bdf = b.get_disparity_major_group(xtab,
                                               original_df=aq,
                                               mask_significance=True)
    min_metric_bdf = b.get_disparity_min_metric(df=xtab, original_df=aq)
    f = Fairness()
    fdf = f.get_group_value_fairness(bdf)
    parity_detrminations = f.list_parities(fdf)
    gaf = f.get_group_attribute_fairness(fdf)
    gof = f.get_overall_fairness(fdf)
    z = aqp.plot_fairness_group(fdf, group_metric='ppr')
    plt.savefig('charts/fairness_overall.png')
    # Checking for False Omission Rate and False Negative Rates
    fg = aqp.plot_fairness_group_all(fdf, metrics=['for', 'fnr'], ncols=2)
    fg.savefig('charts/fairness_metrics.png')

    return None
def fun_bias_fair(a_zip, a_type, fea_eng, model):

    X = fea_eng.drop([
        'aka_name', 'facility_type', 'address', 'inspection_date',
        'inspection_type', 'violations', 'results', 'pass'
    ],
                     axis=1)
    y_pred = model.predict(X)

    xt = pd.DataFrame([
        fea_eng['zip'].astype(float), fea_eng['facility_type'],
        fea_eng['pass'], y_pred
    ]).transpose()
    a_zip['zip'] = a_zip['zip'].astype(float)
    compas = pd.merge(left=xt,
                      right=a_zip,
                      how='left',
                      left_on='zip',
                      right_on='zip')
    compas = pd.merge(left=compas,
                      right=a_type,
                      how='left',
                      left_on='facility_type',
                      right_on='facility_type')
    compas = compas.rename(columns={
        'Unnamed 0': 'score',
        'pass': '******'
    })

    compas.pop('zip')
    compas.pop('facility_type')

    compas['zone'] = compas['zone'].astype(str)
    compas['score'] = compas['score'].astype(int)
    compas['label_value'] = compas['label_value'].astype(int)

    from aequitas.group import Group
    from aequitas.bias import Bias
    from aequitas.fairness import Fairness

    #Group
    g = Group()
    xtab, attrbs = g.get_crosstabs(compas)
    absolute_metrics = g.list_absolute_metrics(xtab)
    xtab[[col for col in xtab.columns if col not in absolute_metrics]]
    group_df = xtab[['attribute_name', 'attribute_value'] +
                    [col for col in xtab.columns
                     if col in absolute_metrics]].round(4)
    abs_gpo = xtab[['attribute_name', 'attribute_value'] +
                   [col for col in xtab.columns
                    if col in absolute_metrics]].round(4)

    #Bias
    bias = Bias()
    bdf = bias.get_disparity_predefined_groups(xtab,
                                               original_df=compas,
                                               ref_groups_dict={
                                                   'zone': 'West',
                                                   'facility_group': 'grocery'
                                               },
                                               alpha=0.05)
    # View disparity metrics added to dataframe
    bias_bdf = bdf[['attribute_name', 'attribute_value'] +
                   bias.list_disparities(bdf)].round(2)
    majority_bdf = bias.get_disparity_major_group(xtab, original_df=compas)
    bias_maj_bdf = majority_bdf[['attribute_name', 'attribute_value'] +
                                bias.list_disparities(majority_bdf)].round(2)
    min_bdf = bias.get_disparity_min_metric(xtab, original_df=compas)
    bias_min_bdf = min_bdf[['attribute_name', 'attribute_value'] +
                           bias.list_disparities(min_bdf)].round(2)
    min_bdf[['attribute_name', 'attribute_value'] +
            bias.list_disparities(min_bdf)].round(2)

    #Fairness
    fair = Fairness()
    fdf = fair.get_group_value_fairness(bdf)
    parity_determinations = fair.list_parities(fdf)
    fair_fdf = fdf[['attribute_name', 'attribute_value'] + absolute_metrics +
                   bias.list_disparities(fdf) + parity_determinations].round(2)
    gaf = fair.get_group_attribute_fairness(fdf)
    fairness_df = fdf.copy()
    gof = fair.get_overall_fairness(fdf)

    tab_bias_fair = fair_fdf[[
        'attribute_name', 'attribute_value', 'for', 'fnr', 'for_disparity',
        'fnr_disparity', 'FOR Parity', 'FNR Parity'
    ]]
    tab_bias_fair.rename(columns={
        'attribute_value': 'group_name',
        'FOR Parity': 'for_parity',
        'FNR Parity': 'fnr_parity',
        'for': 'for_'
    },
                         inplace=True)

    print(tab_bias_fair)

    return tab_bias_fair