Esempio n. 1
0
    def test_multinomial(self):
        # Test that raw_random.multinomial generates the same results as numpy.
        # Check over two calls to see if the random state is correctly updated.
        rng_R = random_state_type()
        post_r, out = multinomial(rng_R, (7, 3), 6, [0.2] * 5)

        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r,
                    mutable=True,
                )
            ],
            [out],
            accept_inplace=True,
        )

        numpy_rng = np.random.RandomState(utt.fetch_seed())
        (val0, ) = f()
        (val1, ) = f()
        numpy_val0 = numpy_rng.multinomial(6, [0.2] * 5, (7, 3))
        numpy_val1 = numpy_rng.multinomial(6, [0.2] * 5, (7, 3))
        assert np.all(val0 == numpy_val0)
        assert np.all(val1 == numpy_val1)

        assert val0.shape == (7, 3, 5)
        assert val1.shape == (7, 3, 5)
Esempio n. 2
0
    def test_poisson(self):
        # Test that raw_random.poisson generates the same results as numpy.
        # Check over two calls to see if the random state is correctly updated.
        rng_R = random_state_type()
        # Use non-default parameters, and larger dimensions because of
        # the integer nature of the result
        post_r, out = poisson(rng_R, lam=5, size=(11, 8))

        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r,
                    mutable=True,
                )
            ],
            [out],
            accept_inplace=True,
        )

        numpy_rng = np.random.RandomState(utt.fetch_seed())
        val0 = f()
        val1 = f()
        numpy_val0 = numpy_rng.poisson(5, size=(11, 8))
        numpy_val1 = numpy_rng.poisson(5, size=(11, 8))
        assert np.allclose(val0, numpy_val0)
        assert np.allclose(val1, numpy_val1)
Esempio n. 3
0
    def test_binomial(self):
        # Test that raw_random.binomial generates the same results as numpy.
        # Check over two calls to see if the random state is correctly updated.
        rng_R = random_state_type()
        # Use non-default parameters, and larger dimensions because of
        # the integer nature of the result
        post_r, bin = binomial(rng_R, (7, 12), 5, 0.8)

        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r,
                    mutable=True,
                )
            ],
            [bin],
            accept_inplace=True,
        )

        numpy_rng = np.random.RandomState(utt.fetch_seed())
        val0 = f()
        val1 = f()
        numpy_val0 = numpy_rng.binomial(5, 0.8, size=(7, 12))
        numpy_val1 = numpy_rng.binomial(5, 0.8, size=(7, 12))
        assert np.all(val0 == numpy_val0)
        assert np.all(val1 == numpy_val1)
Esempio n. 4
0
    def test_normal(self):
        # Test that raw_random.normal generates the same results as numpy.
        # Check over two calls to see if the random state is correctly updated.
        rng_R = random_state_type()
        # Use non-default parameters
        post_r, out = normal(rng_R, (2, 3), 4.0, 2.0)

        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r,
                    mutable=True,
                )
            ],
            [out],
            accept_inplace=True,
        )

        numpy_rng = np.random.RandomState(utt.fetch_seed())
        val0 = f()
        val1 = f()
        numpy_val0 = numpy_rng.normal(4.0, 2.0, size=(2, 3))
        numpy_val1 = numpy_rng.normal(4.0, 2.0, size=(2, 3))
        assert np.allclose(val0, numpy_val0)
        assert np.allclose(val1, numpy_val1)
Esempio n. 5
0
    def test_random_function_ndim(self):
        # Test that random_function helper function accepts argument ndim
        rng_R = random_state_type()

        # ndim is an optional argument indicating the length of the 'shape'
        # ndim not specified, OK
        post_out4, out4 = uniform(rng_R, (4, ))

        # ndim specified, consistent with shape, OK
        post_out1_4, out1_4 = uniform(rng_R, (4, ), ndim=1)
        post_out2_4_4, out2_4_4 = uniform(rng_R, (4, 4), ndim=2)

        # ndim specified, but not compatible with shape
        with pytest.raises(ValueError):
            uniform(rng_R, (4, ), ndim=2)

        f_ok = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_out2_4_4,
                    mutable=True,
                )
            ],
            [out4, out1_4, out2_4_4],
            accept_inplace=True,
        )

        # The correct cases should execute properly
        o4, o1_4, o2_4_4 = f_ok()

        # Check the sanity of the answers
        assert np.allclose(o4, o1_4)
        assert np.allclose(o4, o2_4_4[0])
Esempio n. 6
0
    def test_no_inplace(self):
        # Test that when not running inplace, the RandomState is not updated
        rf = RandomFunction("uniform", tensor.dvector)
        rng_R = random_state_type()

        post_r, out = rf(rng_R, (3, ), 0.0, 1.0)
        f = compile.function([rng_R], [post_r, out])
        rng = np.random.RandomState(utt.fetch_seed())

        rng0, val0 = f(rng)
        rng_ = np.random.RandomState(utt.fetch_seed())
        # rng should still be in a fresh state
        assert rng_R.type.values_eq(rng, rng_)
        # rng0 should be in an updated state
        assert not rng_R.type.values_eq(rng, rng0)

        f2 = compile.function(
            [compile.In(rng_R, value=rng, update=post_r, mutable=False)],
            [post_r, out])
        rng2, val2 = f2()
        # rng should be in a fresh state
        assert rng_R.type.values_eq(rng, rng_)
        # rng2 should be in an updated state
        assert not rng_R.type.values_eq(rng, rng2)
        # The updated state should be the same for both functions
        assert rng_R.type.values_eq(rng2, rng0)

        rng3, val3 = f2()
        # rng2 should not have changed
        assert rng_R.type.values_eq(rng2, rng0)
        # rng3 should be an updated again version of rng2
        assert not rng_R.type.values_eq(rng3, rng2)
        assert not rng_R.type.values_eq(rng3, rng)
Esempio n. 7
0
    def test_inplace_optimization(self):
        # Test that FAST_RUN includes the random_make_inplace optimization
        # inplace = False
        rf2 = RandomFunction(np.random.RandomState.uniform, tensor.dvector)
        rng_R = random_state_type()

        # If calling RandomFunction directly, all args have to be specified,
        # because shape will have to be moved to the end
        post_r2, out2 = rf2(rng_R, (4, ), 0.0, 1.0)

        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r2,
                    mutable=True,
                )
            ],
            out2,
            mode="FAST_RUN",
        )  # DEBUG_MODE can't pass the id-based
        # test below

        # test that the RandomState object stays the same from function call to
        # function call, but that the values returned change from call to call.

        id0 = id(f[rng_R])
        val0 = f()
        assert id0 == id(f[rng_R])
        val1 = f()
        assert id0 == id(f[rng_R])

        assert not np.allclose(val0, val1)
Esempio n. 8
0
    def test_random_function_noshape_args(self):
        # Test if random_function helper works with args but without shape
        rng_R = random_state_type()

        # No shape, default args -> OK
        post_out, out = uniform(rng_R, size=None, ndim=2)
        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_out,
                    mutable=True,
                )
            ],
            [out],
            accept_inplace=True,
        )
        (o, ) = f()

        # No shape, args that have to be broadcasted -> OK
        low = tensor.TensorType(dtype="float64",
                                broadcastable=(False, True, True))()
        high = tensor.TensorType(dtype="float64",
                                 broadcastable=(True, True, True, False))()
        post_out2, out2 = uniform(rng_R, size=None, ndim=2, low=low, high=high)
        assert out2.ndim == 4
        assert out2.broadcastable == (True, False, True, False)

        g = compile.function(
            [
                low,
                high,
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_out2,
                    mutable=True,
                ),
            ],
            [out2],
            accept_inplace=True,
        )
        low_v = [[[3]], [[4]], [[-5]]]
        high_v = [[[[5, 8]]]]
        (o2, ) = g(low_v, high_v)
        assert o2.shape == (1, 3, 1, 2)
Esempio n. 9
0
    def test_permutation(self):
        # Test that raw_random.permutation generates the same results as numpy.
        rng_R = random_state_type()
        post_r, out = permutation(rng_R, size=(9, ), n=6)
        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r,
                    mutable=True,
                )
            ],
            [out],
            accept_inplace=True,
        )

        numpy_rng = np.random.RandomState(utt.fetch_seed())
        # Check over two calls to see if the random state is correctly updated.
        # numpy_rng.permutation outputs one vector at a time,
        # so we call it iteratively to generate all the samples.
        val0 = f()
        val1 = f()
        numpy_val0 = np.asarray([numpy_rng.permutation(6) for i in range(9)])
        numpy_val1 = np.asarray([numpy_rng.permutation(6) for i in range(9)])
        assert np.all(val0 == numpy_val0)
        assert np.all(val1 == numpy_val1)

        # Test that we can generate a list: have size=None or ().
        for ndim in [1, None]:
            post_r, out = permutation(rng_R, n=10, size=None, ndim=ndim)
            inp = compile.In(
                rng_R,
                value=np.random.RandomState(utt.fetch_seed()),
                update=post_r,
                mutable=True,
            )
            f = aesara.function([inp], out)
            o = f()
            assert o.shape == (10, )
            assert (np.sort(o) == np.arange(10)).all()
        # Wrong number of dimensions asked
        with pytest.raises(TypeError):
            permutation(rng_R, size=None, ndim=2)
Esempio n. 10
0
    def test_args(self):
        # Test that arguments to RandomFunction are honored
        rf2 = RandomFunction(np.random.RandomState.uniform, tensor.dvector)
        rf4 = RandomFunction(np.random.RandomState.uniform,
                             tensor.dvector,
                             inplace=True)
        rng_R = random_state_type()

        # use make_node to override some of the self.args
        post_r2, out2 = rf2(rng_R, (4, ), -2, 2)  # NOT INPLACE
        post_r4, out4 = rf4(rng_R, (4, ), -4, 4)  # INPLACE
        post_r2_4, out2_4 = rf2(rng_R, (4, ), -4.0, 2)  # NOT INPLACE
        post_r2_4_4, out2_4_4 = rf2(rng_R, (4, ), -4.0, 4.0)  # NOT INPLACE

        # configure out4 to be computed inplace
        # The update expression means that the random state rng_R will
        # be maintained by post_r4
        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r4,
                    mutable=True,
                )
            ],
            [out2, out4, out2_4, out2_4_4],
            accept_inplace=True,
        )

        f2, f4, f2_4, f2_4_4 = f()
        f2b, f4b, f2_4b, f2_4_4b = f()

        # print f2
        # print f4
        # print f2_4
        # print f2_4_4

        # print f2b
        # print f4b
        # print f2_4b
        # print f2_4_4b

        # setting bounds is same as multiplying by 2
        assert np.allclose(f2 * 2, f4), (f2, f4)

        # retrieving from non-inplace generator
        # is same as inplace one for first call
        assert np.allclose(f2_4_4, f4), (f2_4_4, f4)

        # f4 changes from call to call, that the update has worked
        assert not np.allclose(f4, f4b), (f4, f4b)
Esempio n. 11
0
    def test_permutation_helper(self):
        # Test that raw_random.permutation_helper generates the same
        # results as numpy,
        # and that the 'ndim_added' keyword behaves correctly.

        # permutation_helper needs "ndim_added=1", because its output
        # is one dimension more than its "shape" argument (and there's
        # no way to determine that automatically).
        # Check the working case, over two calls to see if the random
        # state is correctly updated.
        rf = RandomFunction(permutation_helper,
                            tensor.imatrix,
                            8,
                            ndim_added=1)
        rng_R = random_state_type()
        post_r, out = rf(rng_R, (7, ), 8)

        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r,
                    mutable=True,
                )
            ],
            [out],
            accept_inplace=True,
        )

        numpy_rng = np.random.RandomState(utt.fetch_seed())
        val0 = f()
        val1 = f()
        # numpy_rng.permutation outputs one vector at a time,
        # so we call it iteratively to generate all the samples.
        numpy_val0 = np.asarray([numpy_rng.permutation(8) for i in range(7)])
        numpy_val1 = np.asarray([numpy_rng.permutation(8) for i in range(7)])
        assert np.all(val0 == numpy_val0)
        assert np.all(val1 == numpy_val1)

        # This call lacks "ndim_added=1", so ndim_added defaults to 0.
        # A ValueError should be raised.
        rf0 = RandomFunction(permutation_helper, tensor.imatrix, 8)
        post_r0, out0 = rf0(rng_R, (7, ), 8)
        f0 = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r0,
                    mutable=True,
                )
            ],
            [out0],
            accept_inplace=True,
        )
        with pytest.raises(ValueError):
            f0()

        # Here, ndim_added is 2 instead of 1. A ValueError should be raised.
        rf2 = RandomFunction(permutation_helper,
                             tensor.imatrix,
                             8,
                             ndim_added=2)
        post_r2, out2 = rf2(rng_R, (7, ), 8)
        f2 = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r2,
                    mutable=True,
                )
            ],
            [out2],
            accept_inplace=True,
        )
        with pytest.raises(ValueError):
            f2()
Esempio n. 12
0
    def test_random_function_ndim_added(self):
        # Test that random_function helper function accepts ndim_added as
        # keyword argument
        # If using numpy's uniform distribution, ndim_added should be 0,
        # because the shape provided as argument is the output shape.
        # Specifying a different ndim_added will change the Op's output ndim,
        # so np.uniform will produce a result of incorrect shape,
        # and a ValueError should be raised.
        def ndim_added_deco(ndim_added):
            def randomfunction(random_state,
                               size=(),
                               low=0.0,
                               high=0.0,
                               ndim=None):
                ndim, size, bcast = raw_random._infer_ndim_bcast(ndim, size)
                if ndim_added < 0:
                    bcast = bcast[:ndim_added]
                else:
                    bcast = bcast + ((False, ) * ndim_added)
                assert len(bcast) == ndim + ndim_added
                op = RandomFunction(
                    "uniform",
                    tensor.TensorType(dtype="float64", broadcastable=bcast),
                    ndim_added=ndim_added,
                )
                return op(random_state, size, low, high)

            return randomfunction

        uni_1 = ndim_added_deco(1)
        uni_0 = ndim_added_deco(0)
        uni_m1 = ndim_added_deco(-1)

        rng_R = random_state_type()

        p_uni11, uni11 = uni_1(rng_R, size=(4, ))
        p_uni12, uni12 = uni_1(rng_R, size=(3, 4))
        p_uni01, uni01 = uni_0(rng_R, size=(4, ))
        p_uni02, uni02 = uni_0(rng_R, size=(3, 4))
        p_unim11, unim11 = uni_m1(rng_R, size=(4, ))
        p_unim12, unim12 = uni_m1(rng_R, size=(3, 4))

        assert uni11.ndim == 2
        assert uni12.ndim == 3
        assert uni01.ndim == 1
        assert uni02.ndim == 2
        assert unim11.ndim == 0
        assert unim12.ndim == 1

        f11 = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=p_uni11,
                    mutable=True,
                )
            ],
            [uni11],
            accept_inplace=True,
        )
        f12 = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=p_uni12,
                    mutable=True,
                )
            ],
            [uni12],
            accept_inplace=True,
        )
        fm11 = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=p_unim11,
                    mutable=True,
                )
            ],
            [unim11],
            accept_inplace=True,
        )
        fm12 = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=p_unim12,
                    mutable=True,
                )
            ],
            [unim12],
            accept_inplace=True,
        )
        f0 = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=p_uni02,
                    mutable=True,
                )
            ],
            [uni01, uni02],
            accept_inplace=True,
        )
        with pytest.raises(ValueError):
            f11()
        with pytest.raises(ValueError):
            f12()
        with pytest.raises(ValueError):
            fm11()
        with pytest.raises(ValueError):
            fm12()
        u01, u02 = f0()
        assert np.allclose(u01, u02[0])