Esempio n. 1
0
def test_broadcast_grad():
    # rng = numpy.random.RandomState(utt.fetch_seed())
    x1 = tensor4("x")
    # x1_data = rng.randn(1, 1, 300, 300)
    sigma = scalar("sigma")
    # sigma_data = 20
    window_radius = 3

    filter_1d = aet.arange(-window_radius, window_radius + 1)
    filter_1d = filter_1d.astype(aesara.config.floatX)
    filter_1d = exp(-0.5 * filter_1d ** 2 / sigma ** 2)
    filter_1d = filter_1d / filter_1d.sum()

    filter_W = filter_1d.dimshuffle(["x", "x", 0, "x"])

    y = conv2d(x1, filter_W, border_mode="full", filter_shape=[1, 1, None, None])
    aesara.grad(y.sum(), sigma)
Esempio n. 2
0
def test_broadcast_grad():
    x1 = tensor4("x")
    sigma = scalar("sigma")
    window_radius = 3

    filter_1d = at.arange(-window_radius, window_radius + 1)
    filter_1d = filter_1d.astype(aesara.config.floatX)
    filter_1d = exp(-0.5 * filter_1d**2 / sigma**2)
    filter_1d = filter_1d / filter_1d.sum()

    filter_W = filter_1d.dimshuffle(["x", "x", 0, "x"])

    y = conv2d(x1,
               filter_W,
               border_mode="full",
               filter_shape=[1, 1, None, None])
    # TODO FIXME: Make this a real test and `assert` something
    aesara.grad(y.sum(), sigma)