Esempio n. 1
0
 def load_model(self):
     from agent.model_connect4 import Connect4Model
     model = Connect4Model(self.config)
     if self.config.opts.new or not load_best_model_weight(model):
         model.build()
         save_as_best_model(model)
     return model
Esempio n. 2
0
 def load_next_generation_model(self):
     rc = self.config.resource
     while True:
         dirs = get_next_generation_model_dirs(self.config.resource)
         if dirs:
             break
         logger.info(f"There is no next generation model to evaluate")
         sleep(60)
     model_dir = dirs[-1] if self.config.eval.evaluate_latest_first else dirs[0]
     config_path = os.path.join(model_dir, rc.next_generation_model_config_filename)
     weight_path = os.path.join(model_dir, rc.next_generation_model_weight_filename)
     model = Connect4Model(self.config)
     model.load(config_path, weight_path)
     return model, model_dir
Esempio n. 3
0
    def load_model(self):
        from agent.model_connect4 import Connect4Model
        model = Connect4Model(self.config)
        rc = self.config.resource

        dirs = get_next_generation_model_dirs(rc)
        if not dirs:
            logger.debug(f"loading best model")
            if not load_best_model_weight(model):
                raise RuntimeError(f"Best model can not loaded!")
        else:
            latest_dir = dirs[-1]
            logger.debug(f"loading latest model")
            config_path = os.path.join(
                latest_dir, rc.next_generation_model_config_filename)
            weight_path = os.path.join(
                latest_dir, rc.next_generation_model_weight_filename)
            model.load(config_path, weight_path)
        return model
Esempio n. 4
0
 def _load_model(self):
     from agent.model_connect4 import Connect4Model
     model = Connect4Model(self.config)
     if not load_best_model_weight(model):
         raise RuntimeError("best model not found!")
     return model
 def load_best_model(self):
     model = Connect4Model(self.config)
     load_best_model_weight(model)
     return model