def __init__(self, config_file_name, seed=0, verbose=False): self.verbose = verbose self.env = blackbox.EnvBlackBox(seed) #print environment info if (verbose): self.env.print_info() #init DQN agent self.agent = agent_dqn.DQNAgent(self.env, config_file_name, 0.3, 0.05, 0.99999) #self.agent = agent.Agent(self.env) #iterations count self.training_iterations = 100000 self.testing_iterations = 10000
import sys sys.path.append("..") # Adds higher directory to python modules path. import libs.libs_env.env_birds import agent import agent_dqn env = libs.libs_env.env_birds.EnvBirds() env.print_info() #agent = agent.Agent(env) agent = agent_dqn.DQNAgent(env, "flappy_bird_net.json") training_iterations = 500000 for i in range(0, training_iterations): agent.main() if (i % 100) == 0: progress = 100.0 * i / training_iterations print("training done = ", progress, " score = ", env.get_score()) env.reset_score() agent.run_best_enable() testing_iterations = 100000 for i in range(0, testing_iterations): agent.main()
#example for convolutional and deep neural network use import sys sys.path.append("..") # Adds higher directory to python modules path. import libs.libs_env.env_pong import agent_dqn #init environment env = libs.libs_env.env_pong.EnvPong() #print environment info env.print_info() #init DQN agent agent = agent_dqn.DQNAgent(env, "pong_network.json", 0.2, 0.01, 0.99999) #process training training_iterations = 200000 for iteration in range(0, training_iterations): agent.main() #print training progress %, ane score, every 100th iterations if iteration % 100 == 0: print(iteration * 100.0 / training_iterations, env.get_score()) #reset score env.reset_score() #choose only the best action agent.run_best_enable()
env = libs.libs_env.env_atari_arkanoid.EnvAtariArkanoid() #print environment info env.print_info() ''' #random play environment test random_agent = agent.Agent(env) while True: random_agent.main() if env.get_iterations()%256 == 0: print(" miss ", env.get_miss(), " iterations = ", env.get_iterations()) env.render() ''' #init DQN agent dqn_agent = agent_dqn.DQNAgent(env, "atari_arkanoid_network.json", 0.4, 0.1, 0.99999) #process training total_games_to_play = 500 while env.get_games_count() < total_games_to_play: dqn_agent.main() #print training progress %, ane score, every 100th iterations if env.get_iterations() % 256 == 0: env._print() env.render() if env.get_iterations() % 256 == 0: print("done = ", env.get_games_count() * 100.0 / total_games_to_play, "%",
env = env_black_box.EnvBlackBox(4) #print environment info env.print_info() #random play environment test random_agent = agent.Agent(env) while True: random_agent.main() if env.get_iterations() % 256 == 0: print(" iterations = ", env.get_iterations(), " score = ", env.get_score()) #init DQN agent dqn_agent = agent_dqn.DQNAgent(env, "black_box_network.json", 0.1, 0.05, 0.99999) #process training training_iterations = 100000 for i in range(0, training_iterations): dqn_agent.main() if env.get_iterations() % 256 == 0: print(" iterations = ", env.get_iterations(), " score = ", env.get_score(), " epsilon = ", dqn_agent.get_epsilon_training()) #reset score env.reset_score() #choose only the best action
import sys sys.path.append("..") # Adds higher directory to python modules path. import libs.libs_env.env_pong import libs.libs_env.env_arkanoid import agent import agent_dqn #env = libs.libs_env.env_pong.EnvPong() env = libs.libs_env.env_arkanoid.EnvArkanoid() env.print_info() #agent = agent.Agent(env) agent = agent_dqn.DQNAgent(env, "arkanoid_network.json") training_iterations = 250000 for i in range(0, training_iterations): agent.main() if (i % 100) == 0: progress = 100.0 * i / training_iterations print("training done = ", progress, " score = ", env.get_score()) agent.save("arkanoid_network/") env.reset_score() agent.run_best_enable()