Esempio n. 1
0
    def build_model(self):

        # reshape to [batch, color, x, y] to allow for convolution layers to work correctly
        observation_reshape = DimshuffleLayer(self.observation_layer,
                                              (0, 3, 1, 2))
        observation_reshape = Pool2DLayer(observation_reshape,
                                          pool_size=(2, 2))

        # memory
        window_size = 5
        # prev state input
        prev_window = InputLayer(
            (None, window_size) + tuple(observation_reshape.output_shape[1:]),
            name="previous window state")

        # our window
        memory_layer = WindowAugmentation(observation_reshape,
                                          prev_window,
                                          name="new window state")

        memory_dict = {memory_layer: prev_window}

        # pixel-wise maximum over the temporal window (to avoid flickering)
        memory_layer = ExpressionLayer(memory_layer,
                                       lambda a: a.max(axis=1),
                                       output_shape=(None, ) +
                                       memory_layer.output_shape[2:])

        # neural network body
        nn = batch_norm(
            lasagne.layers.Conv2DLayer(memory_layer,
                                       num_filters=16,
                                       filter_size=(8, 8),
                                       stride=(4, 4)))
        nn = batch_norm(
            lasagne.layers.Conv2DLayer(nn,
                                       num_filters=32,
                                       filter_size=(4, 4),
                                       stride=(2, 2)))
        nn = batch_norm(lasagne.layers.DenseLayer(nn, num_units=256))
        # q_eval
        policy_layer = DenseLayer(nn,
                                  num_units=self.n_actions,
                                  nonlinearity=lasagne.nonlinearities.linear,
                                  name="QEvaluator")
        # resolver
        resolver = EpsilonGreedyResolver(policy_layer, name="resolver")

        # all together
        agent = Agent(self.observation_layer, memory_dict, policy_layer,
                      resolver)

        return resolver, agent
Esempio n. 2
0
    def make_agent(self,
                   observation_shape=(1, 64, 64), # same as env.observation_space.shape
                   n_actions = 6,  # same as env.action_space.n
        ):
        """builds agent network"""

        #observation
        inp = InputLayer((None,)+observation_shape,)

        #4-tick window over images
        from agentnet.memory import WindowAugmentation
        prev_wnd = InputLayer((None,4)+observation_shape)
        new_wnd = WindowAugmentation(inp,prev_wnd)
        
        #reshape to (channels, h,w). If you don't use grayscale, 4 should become 12.
        wnd_reshape = reshape(new_wnd, (-1,4)+observation_shape[1:])

        #network body
        conv0 = Conv2DLayer(wnd_reshape,32,5,stride=2,nonlinearity=elu)
        conv1 = Conv2DLayer(conv0,32,5,stride=2,nonlinearity=elu)
        conv2 = Conv2DLayer(conv1,64,5,stride=1,nonlinearity=elu)
        
        dense = DenseLayer(dropout(conv2,0.1),512,nonlinearity=tanh)
        
        #actor head
        logits_layer = DenseLayer(dense,n_actions,nonlinearity=None) 
        #^^^ store policy logits to regularize them later
        policy_layer = NonlinearityLayer(logits_layer,T.nnet.softmax)
        
        #critic head
        V_layer = DenseLayer(dense,1,nonlinearity=None)
        
        #sample actions proportionally to policy_layer
        from agentnet.resolver import ProbabilisticResolver
        action_layer = ProbabilisticResolver(policy_layer)
        
        #get all weights (just like any lasagne network). new_out mentioned just in case.
        self.weights = get_all_params([V_layer,policy_layer],trainable=True)


        return Agent(observation_layers=inp,
                     policy_estimators=(logits_layer,V_layer),
                     agent_states={new_wnd:prev_wnd},
                     action_layers=action_layer)
Esempio n. 3
0
def test_space_invaders(
    game_title='SpaceInvaders-v0',
    n_parallel_games=3,
    replay_seq_len=2,
):
    """
    :param game_title: name of atari game in Gym
    :param n_parallel_games: how many games we run in parallel
    :param replay_seq_len: how long is one replay session from a batch
    """

    atari = gym.make(game_title)
    atari.reset()

    # Game Parameters
    n_actions = atari.action_space.n
    observation_shape = (None, ) + atari.observation_space.shape
    action_names = atari.get_action_meanings()
    del atari
    # ##### Agent observations

    # image observation at current tick goes here
    observation_layer = InputLayer(observation_shape, name="images input")

    # reshape to [batch, color, x, y] to allow for convolutional layers to work correctly
    observation_reshape = DimshuffleLayer(observation_layer, (0, 3, 1, 2))

    # Agent memory states
    window_size = 3

    # prev state input
    prev_window = InputLayer(
        (None, window_size) + tuple(observation_reshape.output_shape[1:]),
        name="previous window state")

    # our window
    window = WindowAugmentation(observation_reshape,
                                prev_window,
                                name="new window state")

    memory_dict = {window: prev_window}

    # ##### Neural network body
    # you may use any other lasagne layers, including convolutions, batch_norms, maxout, etc

    # pixel-wise maximum over the temporal window (to avoid flickering)
    window_max = ExpressionLayer(window,
                                 lambda a: a.max(axis=1),
                                 output_shape=(None, ) +
                                 window.output_shape[2:])

    # a simple lasagne network (try replacing with any other lasagne network and see what works best)
    nn = DenseLayer(window_max, num_units=50, name='dense0')

    # Agent policy and action picking
    q_eval = DenseLayer(nn,
                        num_units=n_actions,
                        nonlinearity=lasagne.nonlinearities.linear,
                        name="QEvaluator")

    #fakes for a2c
    policy_eval = DenseLayer(nn,
                             num_units=n_actions,
                             nonlinearity=lasagne.nonlinearities.softmax,
                             name="a2c action probas")
    state_value_eval = DenseLayer(nn,
                                  num_units=1,
                                  nonlinearity=None,
                                  name="a2c state values")
    # resolver
    resolver = ProbabilisticResolver(policy_eval, name="resolver")

    # agent
    agent = Agent(observation_layer, memory_dict,
                  (q_eval, policy_eval, state_value_eval), resolver)

    # Since it's a single lasagne network, one can get it's weights, output, etc
    weights = lasagne.layers.get_all_params(resolver, trainable=True)

    # Agent step function
    print('compiling react')
    applier_fun = agent.get_react_function()

    # a nice pythonic interface
    def step(observation, prev_memories='zeros', batch_size=n_parallel_games):
        """ returns actions and new states given observation and prev state
        Prev state in default setup should be [prev window,]"""
        # default to zeros
        if prev_memories == 'zeros':
            prev_memories = [
                np.zeros((batch_size, ) + tuple(mem.output_shape[1:]),
                         dtype='float32') for mem in agent.agent_states
            ]
        res = applier_fun(np.array(observation), *prev_memories)
        action = res[0]
        memories = res[1:]
        return action, memories

    # # Create and manage a pool of atari sessions to play with

    pool = GamePool(game_title, n_parallel_games)

    observation_log, action_log, reward_log, _, _, _ = pool.interact(step, 50)

    print(np.array(action_names)[np.array(action_log)[:3, :5]])

    # # experience replay pool
    # Create an environment with all default parameters
    env = SessionPoolEnvironment(observations=observation_layer,
                                 actions=resolver,
                                 agent_memories=agent.agent_states)

    def update_pool(env, pool, n_steps=100):
        """ a function that creates new sessions and ads them into the pool
        throwing the old ones away entirely for simplicity"""

        preceding_memory_states = list(pool.prev_memory_states)

        # get interaction sessions
        observation_tensor, action_tensor, reward_tensor, _, is_alive_tensor, _ = pool.interact(
            step, n_steps=n_steps)

        # load them into experience replay environment
        env.load_sessions(observation_tensor, action_tensor, reward_tensor,
                          is_alive_tensor, preceding_memory_states)

    # load first  sessions
    update_pool(env, pool, replay_seq_len)

    # A more sophisticated way of training is to store a large pool of sessions and train on random batches of them.
    # ### Training via experience replay

    # get agent's Q-values, policy, etc obtained via experience replay
    _env_states, _observations, _memories, _imagined_actions, estimators = agent.get_sessions(
        env,
        session_length=replay_seq_len,
        batch_size=env.batch_size,
        optimize_experience_replay=True,
    )
    (q_values_sequence, policy_sequence, value_sequence) = estimators

    # Evaluating loss function

    scaled_reward_seq = env.rewards
    # For SpaceInvaders, however, not scaling rewards is at least working

    elwise_mse_loss = 0.

    #1-step algos
    for algo in qlearning, sarsa:
        elwise_mse_loss += algo.get_elementwise_objective(
            q_values_sequence,
            env.actions[0],
            scaled_reward_seq,
            env.is_alive,
            gamma_or_gammas=0.99,
        )
    #qlearning_n_step
    for n in (1, 3, replay_seq_len - 1, replay_seq_len, replay_seq_len + 1,
              None):
        elwise_mse_loss += qlearning_n_step.get_elementwise_objective(
            q_values_sequence,
            env.actions[0],
            scaled_reward_seq,
            env.is_alive,
            gamma_or_gammas=0.99,
            n_steps=n)

    #a2c n_step

    elwise_mse_loss += a2c_n_step.get_elementwise_objective(
        policy_sequence,
        value_sequence[:, :, 0],
        env.actions[0],
        scaled_reward_seq,
        env.is_alive,
        gamma_or_gammas=0.99,
        n_steps=3)

    # compute mean over "alive" fragments
    mse_loss = elwise_mse_loss.sum() / env.is_alive.sum()

    # regularize network weights
    reg_l2 = regularize_network_params(resolver, l2) * 10**-4

    loss = mse_loss + reg_l2

    # Compute weight updates
    updates = lasagne.updates.adadelta(loss, weights, learning_rate=0.01)

    # mean session reward
    mean_session_reward = env.rewards.sum(axis=1).mean()

    # # Compile train and evaluation functions

    print('compiling')
    train_fun = theano.function([], [loss, mean_session_reward],
                                updates=updates)
    evaluation_fun = theano.function(
        [], [loss, mse_loss, reg_l2, mean_session_reward])
    print("I've compiled!")

    # # Training loop

    for epoch_counter in range(10):
        update_pool(env, pool, replay_seq_len)
        loss, avg_reward = train_fun()
        full_loss, q_loss, l2_penalty, avg_reward_current = evaluation_fun()

        print("epoch %i,loss %.5f, rewards: %.5f " %
              (epoch_counter, full_loss, avg_reward_current))
        print("rec %.3f reg %.3f" % (q_loss, l2_penalty))
Esempio n. 4
0
def test_memory(
    game_title='SpaceInvaders-v0',
    n_parallel_games=3,
    replay_seq_len=2,
):
    """
    :param game_title: name of atari game in Gym
    :param n_parallel_games: how many games we run in parallel
    :param replay_seq_len: how long is one replay session from a batch
    """

    atari = gym.make(game_title)
    atari.reset()

    # Game Parameters
    n_actions = atari.action_space.n
    observation_shape = (None, ) + atari.observation_space.shape
    action_names = atari.get_action_meanings()
    del atari
    # ##### Agent observations

    # image observation at current tick goes here
    observation_layer = InputLayer(observation_shape, name="images input")

    # reshape to [batch, color, x, y] to allow for convolutional layers to work correctly
    observation_reshape = DimshuffleLayer(observation_layer, (0, 3, 1, 2))

    # Agent memory states

    memory_dict = OrderedDict([])

    ###Window
    window_size = 3

    # prev state input
    prev_window = InputLayer(
        (None, window_size) + tuple(observation_reshape.output_shape[1:]),
        name="previous window state")

    # our window
    window = WindowAugmentation(observation_reshape,
                                prev_window,
                                name="new window state")

    # pixel-wise maximum over the temporal window (to avoid flickering)
    window_max = ExpressionLayer(window,
                                 lambda a: a.max(axis=1),
                                 output_shape=(None, ) +
                                 window.output_shape[2:])

    memory_dict[window] = prev_window

    ###Stack
    #prev stack
    stack_w, stack_h = 4, 5
    stack_inputs = DenseLayer(observation_reshape, stack_w, name="prev_stack")
    stack_controls = DenseLayer(observation_reshape,
                                3,
                                nonlinearity=lasagne.nonlinearities.softmax,
                                name="prev_stack")
    prev_stack = InputLayer((None, stack_h, stack_w),
                            name="previous stack state")
    stack = StackAugmentation(stack_inputs, prev_stack, stack_controls)
    memory_dict[stack] = prev_stack

    stack_top = lasagne.layers.SliceLayer(stack, 0, 1)

    ###RNN preset

    prev_rnn = InputLayer((None, 16), name="previous RNN state")
    new_rnn = RNNCell(prev_rnn, observation_reshape)
    memory_dict[new_rnn] = prev_rnn

    ###GRU preset
    prev_gru = InputLayer((None, 16), name="previous GRUcell state")
    new_gru = GRUCell(prev_gru, observation_reshape)
    memory_dict[new_gru] = prev_gru

    ###GRUmemorylayer
    prev_gru1 = InputLayer((None, 15), name="previous GRUcell state")
    new_gru1 = GRUMemoryLayer(15, observation_reshape, prev_gru1)
    memory_dict[new_gru1] = prev_gru1

    #LSTM with peepholes
    prev_lstm0_cell = InputLayer(
        (None, 13), name="previous LSTMCell hidden state [with peepholes]")

    prev_lstm0_out = InputLayer(
        (None, 13), name="previous LSTMCell output state [with peepholes]")

    new_lstm0_cell, new_lstm0_out = LSTMCell(
        prev_lstm0_cell,
        prev_lstm0_out,
        input_or_inputs=observation_reshape,
        peepholes=True,
        name="newLSTM1 [with peepholes]")

    memory_dict[new_lstm0_cell] = prev_lstm0_cell
    memory_dict[new_lstm0_out] = prev_lstm0_out

    #LSTM without peepholes
    prev_lstm1_cell = InputLayer(
        (None, 14), name="previous LSTMCell hidden state [no peepholes]")

    prev_lstm1_out = InputLayer(
        (None, 14), name="previous LSTMCell output state [no peepholes]")

    new_lstm1_cell, new_lstm1_out = LSTMCell(
        prev_lstm1_cell,
        prev_lstm1_out,
        input_or_inputs=observation_reshape,
        peepholes=False,
        name="newLSTM1 [no peepholes]")

    memory_dict[new_lstm1_cell] = prev_lstm1_cell
    memory_dict[new_lstm1_out] = prev_lstm1_out

    ##concat everything

    for i in [flatten(window_max), stack_top, new_rnn, new_gru, new_gru1]:
        print(i.output_shape)
    all_memory = concat([
        flatten(window_max),
        stack_top,
        new_rnn,
        new_gru,
        new_gru1,
        new_lstm0_out,
        new_lstm1_out,
    ])

    # ##### Neural network body
    # you may use any other lasagne layers, including convolutions, batch_norms, maxout, etc

    # a simple lasagne network (try replacing with any other lasagne network and see what works best)
    nn = DenseLayer(all_memory, num_units=50, name='dense0')

    # Agent policy and action picking
    q_eval = DenseLayer(nn,
                        num_units=n_actions,
                        nonlinearity=lasagne.nonlinearities.linear,
                        name="QEvaluator")

    # resolver
    resolver = EpsilonGreedyResolver(q_eval, epsilon=0.1, name="resolver")

    # agent
    agent = Agent(observation_layer, memory_dict, q_eval, resolver)

    # Since it's a single lasagne network, one can get it's weights, output, etc
    weights = lasagne.layers.get_all_params(resolver, trainable=True)

    # Agent step function
    print('compiling react')
    applier_fun = agent.get_react_function()

    # a nice pythonic interface
    def step(observation, prev_memories='zeros', batch_size=n_parallel_games):
        """ returns actions and new states given observation and prev state
        Prev state in default setup should be [prev window,]"""
        # default to zeros
        if prev_memories == 'zeros':
            prev_memories = [
                np.zeros((batch_size, ) + tuple(mem.output_shape[1:]),
                         dtype='float32') for mem in agent.agent_states
            ]
        res = applier_fun(np.array(observation), *prev_memories)
        action = res[0]
        memories = res[1:]
        return action, memories

    # # Create and manage a pool of atari sessions to play with

    pool = GamePool(game_title, n_parallel_games)

    observation_log, action_log, reward_log, _, _, _ = pool.interact(step, 50)

    print(np.array(action_names)[np.array(action_log)[:3, :5]])

    # # experience replay pool
    # Create an environment with all default parameters
    env = SessionPoolEnvironment(observations=observation_layer,
                                 actions=resolver,
                                 agent_memories=agent.agent_states)

    def update_pool(env, pool, n_steps=100):
        """ a function that creates new sessions and ads them into the pool
        throwing the old ones away entirely for simplicity"""

        preceding_memory_states = list(pool.prev_memory_states)

        # get interaction sessions
        observation_tensor, action_tensor, reward_tensor, _, is_alive_tensor, _ = pool.interact(
            step, n_steps=n_steps)

        # load them into experience replay environment
        env.load_sessions(observation_tensor, action_tensor, reward_tensor,
                          is_alive_tensor, preceding_memory_states)

    # load first  sessions
    update_pool(env, pool, replay_seq_len)

    # A more sophisticated way of training is to store a large pool of sessions and train on random batches of them.
    # ### Training via experience replay

    # get agent's Q-values obtained via experience replay
    _env_states, _observations, _memories, _imagined_actions, q_values_sequence = agent.get_sessions(
        env,
        session_length=replay_seq_len,
        batch_size=env.batch_size,
        optimize_experience_replay=True,
    )

    # Evaluating loss function

    scaled_reward_seq = env.rewards
    # For SpaceInvaders, however, not scaling rewards is at least working

    elwise_mse_loss = qlearning.get_elementwise_objective(
        q_values_sequence,
        env.actions[0],
        scaled_reward_seq,
        env.is_alive,
        gamma_or_gammas=0.99,
    )

    # compute mean over "alive" fragments
    mse_loss = elwise_mse_loss.sum() / env.is_alive.sum()

    # regularize network weights
    reg_l2 = regularize_network_params(resolver, l2) * 10**-4

    loss = mse_loss + reg_l2

    # Compute weight updates
    updates = lasagne.updates.adadelta(loss, weights, learning_rate=0.01)

    # mean session reward
    mean_session_reward = env.rewards.sum(axis=1).mean()

    # # Compile train and evaluation functions

    print('compiling')
    train_fun = theano.function([], [loss, mean_session_reward],
                                updates=updates)
    evaluation_fun = theano.function(
        [], [loss, mse_loss, reg_l2, mean_session_reward])
    print("I've compiled!")

    # # Training loop

    for epoch_counter in range(10):
        update_pool(env, pool, replay_seq_len)
        loss, avg_reward = train_fun()
        full_loss, q_loss, l2_penalty, avg_reward_current = evaluation_fun()

        print("epoch %i,loss %.5f, rewards: %.5f " %
              (epoch_counter, full_loss, avg_reward_current))
        print("rec %.3f reg %.3f" % (q_loss, l2_penalty))
Esempio n. 5
0
    def __init__(
        self,
        observation_shape,
        n_actions,
        n_goals=32,
        metacontroller_period=5,
        window_size=3,
        embedding_size=128,
    ):

        #image observation at current tick goes here
        self.observation_layer = InputLayer(observation_shape,
                                            name="images input")

        #reshape to [batch, color, x, y] to allow for convolutional layers to work correctly
        observation_reshape = DimshuffleLayer(self.observation_layer,
                                              (0, 3, 1, 2))

        observation_reshape = lasagne.layers.Pool2DLayer(
            observation_reshape, (2, 2), mode='average_inc_pad')

        #prev state input
        prev_window = InputLayer(
            (None, window_size) + tuple(observation_reshape.output_shape[1:]),
            name="previous window state")
        #our window
        window = WindowAugmentation(observation_reshape,
                                    prev_window,
                                    name="new window state")
        # pixel-wise maximum over the temporal window (to avoid flickering)
        window_max = ExpressionLayer(window,
                                     lambda a: a.max(axis=1),
                                     output_shape=(None, ) +
                                     window.output_shape[2:])

        memory_dict = {window: prev_window}

        #a simple lasagne network (try replacing with any other lasagne network and see what works best)
        nn = batch_norm(
            Conv2DLayer(window_max,
                        16,
                        filter_size=8,
                        stride=(4, 4),
                        name='cnn0'))
        nn = batch_norm(
            Conv2DLayer(nn, 32, filter_size=4, stride=(2, 2), name='cnn1'))
        nn = batch_norm(
            Conv2DLayer(nn, 64, filter_size=4, stride=(2, 2), name='cnn2'))

        #nn = DropoutLayer(nn,name = "dropout", p=0.05) #will get deterministic during evaluation
        self.dnn_output = nn = DenseLayer(nn, num_units=256, name='dense1')

        self.goal_layer = InputLayer((None, ), T.ivector(), name='boss goal')
        self.goal_layer.output_dtype = 'int32'
        goal_emb = EmbeddingLayer(self.goal_layer, n_goals, embedding_size)

        nn = lasagne.layers.ConcatLayer([goal_emb, nn])

        #q_eval
        q_eval = DenseLayer(nn,
                            num_units=n_actions,
                            nonlinearity=lasagne.nonlinearities.linear,
                            name="QEvaluator")

        #resolver
        self.resolver = EpsilonGreedyResolver(q_eval, name="resolver")

        #all together
        self.agent = Agent([self.observation_layer, self.goal_layer],
                           memory_dict, q_eval,
                           [self.resolver, self.dnn_output])

        self.observation_shape = observation_shape
        self.n_actions = n_actions
        self.n_goals = n_goals
        self.metacontroller_period = metacontroller_period
        self.window_size = window_size
        self.embedding_size = embedding_size

        self.applier_fun = self.agent.get_react_function()

        self.weights = lasagne.layers.get_all_params(self.resolver,
                                                     trainable=True)