def drive(self, state, **kwargs):
        response = utils.get_default_response()

        response['gear'] = self.transmission.get_new_gear(state)

        extracted_state = extract_state(state, self.state_keys)
        if len(self.states_history) == 0:
            self.states_history.append(
                np.concatenate((extracted_state, (0, 0))))

        regressor_input = self.scaler.transform(
            [np.concatenate((extracted_state, self.states_history[-1]))])

        steer_val = self.steer_regressor.predict(regressor_input)[0]

        classifier_input = np.concatenate((regressor_input[0], [steer_val]))

        speed_action_index = self.speed_classifier.predict([classifier_input
                                                            ])[0]

        self.states_history.append(
            np.array([
                *extracted_state,
                steer_val,
                speed_action_index,
            ]))

        total_response = {
            **response,
            'steer': steer_val,
            **self.speed_actions_labels[speed_action_index],
        }

        self.manage_start_accel(state, total_response)
        return total_response
Esempio n. 2
0
    def drive(self, state, **kwargs):
        response = utils.get_default_response()

        response['gear'] = self.transmission.get_new_gear(state)

        human_state = self.HumanInput.get_state()
        for k in self.hs_counter:
            if human_state[k]:
                self.hs_counter[k] += 1
            else:
                self.hs_counter[k] = max(self.hs_counter[k] - 2, 0)
        if human_state['accel']:
            response['accel'] = 1

        if human_state['brake']:
            response['brake'] = 1
            response['accel'] = 0

        if human_state['left']:
            response['steer'] = np.clip(
                self.hs_counter['left'] * 0.015, 0.0, 1.0)
        if human_state['right']:
            response['steer'] = - \
                np.clip(self.hs_counter['right'] * 0.015, 0.0, 1.0)
        return response
Esempio n. 3
0
    def drive(self, state, **kwargs):
        if self.is_starting:
            if state['distFromStart'] < 20.:
                self.is_starting = False

        response = utils.get_default_response()

        response['gear'] = self.transmission.get_new_gear(state)

        goalSpeed = self.get_goal_speed(state['distFromStart'], **kwargs)
        if abs(state['trackPos']) > 1:
            goalSpeed = 20

        if state['speedX'] > goalSpeed:
            if state['speedX'] > 5. + goalSpeed:
                response['brake'] = 1
            response['accel'] = 0
        else:
            response['accel'] = 1

        if abs(state['trackPos']) < 0.2:
            self.precisionMode(state, response)

        else:
            targetAngle = state['trackPos'] * 90
            # turningForce = abs(state['angle'] - targetAngle) * (1 / 45) * 3
            if state['angle'] < targetAngle:
                response['steer'] = -settings['hard_turn']
            else:
                response['steer'] = settings['hard_turn']

        return response
Esempio n. 4
0
    def drive(self, state, **kwargs):
        response = utils.get_default_response()

        response['gear'] = self.transmission.get_new_gear(state)

        prepared_state = state_to_vector(state, keys_list=self.state_keys)

        state_normed = self.scaler.transform([prepared_state])

        predicted_action = self.actions[self.classifier.predict_classes(
            state_normed)[0]]

        return {**response, **predicted_action}
    def drive(self, state, **kwargs):
        response = utils.get_default_response()

        response['gear'] = self.transmission.get_new_gear(state)

        vector_before_norm = state_to_vector(state, self.state_keys)

        state_vector = self.scaler.transform(vector_before_norm[np.newaxis, :])

        action_id = self.classifier.predict(state_vector)[0]

        return {
            **response,
            **self.actions[action_id],
        }
Esempio n. 6
0
    def drive(self, state, **kwargs):
        response = utils.get_default_response()

        response['gear'] = self.transmission.get_new_gear(state)

        prepared_state = state_to_vector(
            state,
            keys_list=self.state_keys
        )
        state_normed = (prepared_state - self.X_min) / \
            (self.X_max - self.X_min)
        predicted_action = self.actions[
            self.knn.predict([state_normed])[0]
        ]

        return {**response, **predicted_action}
    def drive(self, state, **kwargs):
        response = utils.get_default_response()

        response['gear'] = self.transmission.get_new_gear(state)

        state_vector = self.scaler.transform(
            [extract_state(state, self.state_keys)])

        steer_val = self.steer_regressor.predict(state_vector)[0]

        state_vector = np.hstack((state_vector, [[steer_val]]))

        speed_action_index = self.speed_classifier.predict(state_vector)[0]

        return {
            **response,
            'steer': steer_val,
            **self.speed_actions_labels[speed_action_index],
        }
Esempio n. 8
0
    def drive(self, state, **kwargs):
        response = utils.get_default_response()

        response['gear'] = self.transmission.get_new_gear(state)

        state_vector = self.scaler.transform(
            [extract_state(state, self.state_keys)])

        steer_direction = self.steer_classifier.predict(state_vector)[0]

        steer_magnitude = self.steer_regressor.predict(state_vector)[0]

        # if steer_direction == 0 and steer_magnitude > 0.05:
        #     print(
        #         'steer_direction', steer_direction, 'steer_magnitude', steer_magnitude
        #     )

        if steer_direction < 0 and steer_magnitude > 0:
            steer_val = 0
        elif steer_direction > 0 and steer_magnitude < 0:
            steer_val = 0
        elif steer_direction == 0:
            steer_val = steer_magnitude / 3
        else:
            steer_val = steer_magnitude

        state_vector = np.hstack((state_vector, [[steer_val]]))

        speed_action_index = self.speed_classifier.predict(state_vector)[0]

        response = {
            **response,
            'steer': steer_val,
            **self.speed_actions_labels[speed_action_index],
        }

        # self.apply_speed_limit(state, response)
        # self.manage_start_accel(state, response)
        return response