def get_nclusters_logw_pairs(extents, npoints): """ Get sample statistics by agglomeratively clustering random points. These sample statistics will be used for a null distribution. @param extents: the length of each axis of the hypercube @param npoints: sample this many points at a time @return: (nclusters, logw) pairs for a single sampling of points """ # sample the points pointlist = [] for i in range(npoints): p = [random.uniform(0, x) for x in extents] pointlist.append(p) points = np.array(pointlist) # do the clustering, recording the within group sum of squares nclusters_wgss_pairs = [] allmeandist = kmeans.get_allmeandist(points) cluster_map = agglom.get_initial_cluster_map(points) b_ssd_map = agglom.get_initial_b_ssd_map(points) w_ssd_map = agglom.get_initial_w_ssd_map(points) q = agglom.get_initial_queue(b_ssd_map) while len(cluster_map) > 2: pair = agglom.get_pair_fast(cluster_map, q) agglom.merge_fast(cluster_map, w_ssd_map, b_ssd_map, q, pair) indices = cluster_map.keys() wgss = sum(w_ssd_map[i] / float(len(cluster_map[i])) for i in indices) nclusters_wgss_pairs.append((len(cluster_map), wgss)) return nclusters_wgss_pairs
def get_response_content(fs): rtable = RUtil.RTable(fs.table.splitlines()) header_row = rtable.headers data_rows = rtable.data points = get_rtable_info(rtable, fs.annotation, fs.axes) # do the clustering cluster_map = agglom.get_initial_cluster_map(points) w_ssd_map = agglom.get_initial_w_ssd_map(points) b_ssd_map = agglom.get_initial_b_ssd_map(points) q = agglom.get_initial_queue(b_ssd_map) while len(cluster_map) > fs.k: pair = agglom.get_pair_fast(cluster_map, q) agglom.merge_fast(cluster_map, w_ssd_map, b_ssd_map, q, pair) # create the map from a point index to a cluster index point_to_cluster = {} for cluster_index, point_indices in cluster_map.items(): for point_index in point_indices: point_to_cluster[point_index] = cluster_index # define the raw labels which may be big numbers raw_labels = [point_to_cluster[i] for i, p in enumerate(points)] # rename the labels with small numbers raw_to_label = dict((b, a) for a, b in enumerate(sorted(set(raw_labels)))) labels = [raw_to_label[raw] for raw in raw_labels] # get the response lines = ['\t'.join(header_row + [fs.annotation])] for i, (label, data_row) in enumerate(zip(labels, data_rows)): row = data_row + [str(label)] lines.append('\t'.join(row)) # return the response return '\n'.join(lines) + '\n'
def get_response_content(fs): # read the table rtable = RUtil.RTable(fs.table.splitlines()) header_row = rtable.headers data_rows = rtable.data Carbone.validate_headers(header_row) # get the numpy array of conformant points h_to_i = dict((h, i + 1) for i, h in enumerate(header_row)) axis_headers = fs.axes if not axis_headers: raise ValueError('no Euclidean axes were provided') axis_set = set(axis_headers) header_set = set(header_row) bad_axes = axis_set - header_set if bad_axes: raise ValueError('invalid axes: ' + ', '.join(bad_axes)) axis_lists = [] for h in axis_headers: index = h_to_i[h] try: axis_list = Carbone.get_numeric_column(data_rows, index) except Carbone.NumericError: raise ValueError('expected the axis column %s ' 'to be numeric' % h) axis_lists.append(axis_list) points = np.array(zip(*axis_lists)) # do the clustering while computing the wgss at each merge cluster_counts = [] wgss_values = [] allmeandist = kmeans.get_allmeandist(points) cluster_map = agglom.get_initial_cluster_map(points) w_ssd_map = agglom.get_initial_w_ssd_map(points) b_ssd_map = agglom.get_initial_b_ssd_map(points) q = agglom.get_initial_queue(b_ssd_map) while len(cluster_map) > 2: # do an agglomeration step pair = agglom.get_pair_fast(cluster_map, q) agglom.merge_fast(cluster_map, w_ssd_map, b_ssd_map, q, pair) # compute the within group sum of squares indices = cluster_map.keys() wgss = sum(w_ssd_map[i] / float(len(cluster_map[i])) for i in indices) # compute the between group sum of squares bgss = allmeandist - wgss # append to the lists cluster_counts.append(len(cluster_map)) wgss_values.append(wgss) # compute the log wgss values wlogs = np.log(wgss_values) # reverse the log values so that they are by increasing cluster size wlogs = list(reversed(wlogs)) # sample from the null distribution extents = np.max(points, axis=0) - np.min(points, axis=0) nclusters_list, expectations, thresholds = do_sampling( extents, len(points), fs.nsamples) # get the gaps gaps = np.array(expectations) - wlogs # Get the best cluster count according to the gap statistic. best_i = None criteria = [] for i, ip1 in iterutils.pairwise(range(len(nclusters_list))): k, kp1 = nclusters_list[i], nclusters_list[ip1] criterion = gaps[i] - gaps[ip1] + thresholds[ip1] criteria.append(criterion) if criterion > 0: if best_i is None: best_i = i best_k = nclusters_list[best_i] # create the response out = StringIO() print >> out, 'best cluster count: k = %d' % best_k if fs.verbose: print >> out print >> out, '(k, expected, observed, gap, threshold, criterion):' n = len(nclusters_list) for i, k in enumerate(nclusters_list): row = [k, expectations[i], wlogs[i], gaps[i], thresholds[i]] if i < n - 1: row += [criteria[i]] else: row += ['-'] print >> out, '\t'.join(str(x) for x in row) # return the response return out.getvalue()
def get_response_content(fs): # read the table rtable = RUtil.RTable(fs.table.splitlines()) header_row = rtable.headers data_rows = rtable.data Carbone.validate_headers(header_row) # get the numpy array of conformant points h_to_i = dict((h, i+1) for i, h in enumerate(header_row)) axis_headers = fs.axes if not axis_headers: raise ValueError('no Euclidean axes were provided') axis_set = set(axis_headers) header_set = set(header_row) bad_axes = axis_set - header_set if bad_axes: raise ValueError('invalid axes: ' + ', '.join(bad_axes)) axis_lists = [] for h in axis_headers: index = h_to_i[h] try: axis_list = Carbone.get_numeric_column(data_rows, index) except Carbone.NumericError: raise ValueError( 'expected the axis column %s ' 'to be numeric' % h) axis_lists.append(axis_list) points = np.array(zip(*axis_lists)) # do the clustering while computing the calinski index at each merge cluster_counts = [] wgss_values = [] neg_calinskis = [] allmeandist = kmeans.get_allmeandist(points) cluster_map = agglom.get_initial_cluster_map(points) w_ssd_map = agglom.get_initial_w_ssd_map(points) b_ssd_map = agglom.get_initial_b_ssd_map(points) q = agglom.get_initial_queue(b_ssd_map) while len(cluster_map) > 2: # do an agglomeration step pair = agglom.get_pair_fast(cluster_map, q) agglom.merge_fast(cluster_map, w_ssd_map, b_ssd_map, q, pair) # compute the within group sum of squares indices = cluster_map.keys() wgss = sum(w_ssd_map[i] / float(len(cluster_map[i])) for i in indices) # compute the between group sum of squares bgss = allmeandist - wgss # get the calinksi index n = len(points) k = len(cluster_map) numerator = bgss / float(k - 1) denominator = wgss / float(n - k) calinski = numerator / denominator # append to the lists cluster_counts.append(k) wgss_values.append(wgss) neg_calinskis.append(-calinski) # Get the best cluster count according to the calinski index. # Do this trickery with negs so that it breaks ties # using the smallest number of clusters. neg_calinksi, best_k = min(zip(neg_calinskis, cluster_counts)) # create the response out = StringIO() print >> out, 'best cluster count: k = %d' % best_k if fs.verbose: print >> out print >> out, '(k, wgss, calinski):' for k, wgss, neg_calinski in zip( cluster_counts, wgss_values, neg_calinskis): row = (k, wgss, -neg_calinski) print >> out, '\t'.join(str(x) for x in row) # return the response return out.getvalue()
def get_response_content(fs): # read the table rtable = RUtil.RTable(fs.table.splitlines()) header_row = rtable.headers data_rows = rtable.data Carbone.validate_headers(header_row) # get the numpy array of conformant points h_to_i = dict((h, i+1) for i, h in enumerate(header_row)) axis_headers = fs.axes if not axis_headers: raise ValueError('no Euclidean axes were provided') axis_set = set(axis_headers) header_set = set(header_row) bad_axes = axis_set - header_set if bad_axes: raise ValueError('invalid axes: ' + ', '.join(bad_axes)) axis_lists = [] for h in axis_headers: index = h_to_i[h] try: axis_list = Carbone.get_numeric_column(data_rows, index) except Carbone.NumericError: raise ValueError( 'expected the axis column %s ' 'to be numeric' % h) axis_lists.append(axis_list) points = np.array(zip(*axis_lists)) # do the clustering while computing the wgss at each merge cluster_counts = [] wgss_values = [] allmeandist = kmeans.get_allmeandist(points) cluster_map = agglom.get_initial_cluster_map(points) w_ssd_map = agglom.get_initial_w_ssd_map(points) b_ssd_map = agglom.get_initial_b_ssd_map(points) q = agglom.get_initial_queue(b_ssd_map) while len(cluster_map) > 2: # do an agglomeration step pair = agglom.get_pair_fast(cluster_map, q) agglom.merge_fast(cluster_map, w_ssd_map, b_ssd_map, q, pair) # compute the within group sum of squares indices = cluster_map.keys() wgss = sum(w_ssd_map[i] / float(len(cluster_map[i])) for i in indices) # compute the between group sum of squares bgss = allmeandist - wgss # append to the lists cluster_counts.append(len(cluster_map)) wgss_values.append(wgss) # compute the log wgss values wlogs = np.log(wgss_values) # reverse the log values so that they are by increasing cluster size wlogs = list(reversed(wlogs)) # sample from the null distribution extents = np.max(points, axis=0) - np.min(points, axis=0) nclusters_list, expectations, thresholds = do_sampling( extents, len(points), fs.nsamples) # get the gaps gaps = np.array(expectations) - wlogs # Get the best cluster count according to the gap statistic. best_i = None criteria = [] for i, ip1 in iterutils.pairwise(range(len(nclusters_list))): k, kp1 = nclusters_list[i], nclusters_list[ip1] criterion = gaps[i] - gaps[ip1] + thresholds[ip1] criteria.append(criterion) if criterion > 0: if best_i is None: best_i = i best_k = nclusters_list[best_i] # create the response out = StringIO() print >> out, 'best cluster count: k = %d' % best_k if fs.verbose: print >> out print >> out, '(k, expected, observed, gap, threshold, criterion):' n = len(nclusters_list) for i, k in enumerate(nclusters_list): row = [k, expectations[i], wlogs[i], gaps[i], thresholds[i]] if i < n-1: row += [criteria[i]] else: row += ['-'] print >> out, '\t'.join(str(x) for x in row) # return the response return out.getvalue()
def get_response_content(fs): # read the table rtable = RUtil.RTable(fs.table.splitlines()) header_row = rtable.headers data_rows = rtable.data Carbone.validate_headers(header_row) # get the numpy array of conformant points h_to_i = dict((h, i + 1) for i, h in enumerate(header_row)) axis_headers = fs.axes if not axis_headers: raise ValueError('no Euclidean axes were provided') axis_set = set(axis_headers) header_set = set(header_row) bad_axes = axis_set - header_set if bad_axes: raise ValueError('invalid axes: ' + ', '.join(bad_axes)) axis_lists = [] for h in axis_headers: index = h_to_i[h] try: axis_list = Carbone.get_numeric_column(data_rows, index) except Carbone.NumericError: raise ValueError('expected the axis column %s ' 'to be numeric' % h) axis_lists.append(axis_list) points = np.array(zip(*axis_lists)) # do the clustering while computing the calinski index at each merge cluster_counts = [] wgss_values = [] neg_calinskis = [] allmeandist = kmeans.get_allmeandist(points) cluster_map = agglom.get_initial_cluster_map(points) w_ssd_map = agglom.get_initial_w_ssd_map(points) b_ssd_map = agglom.get_initial_b_ssd_map(points) q = agglom.get_initial_queue(b_ssd_map) while len(cluster_map) > 2: # do an agglomeration step pair = agglom.get_pair_fast(cluster_map, q) agglom.merge_fast(cluster_map, w_ssd_map, b_ssd_map, q, pair) # compute the within group sum of squares indices = cluster_map.keys() wgss = sum(w_ssd_map[i] / float(len(cluster_map[i])) for i in indices) # compute the between group sum of squares bgss = allmeandist - wgss # get the calinksi index n = len(points) k = len(cluster_map) numerator = bgss / float(k - 1) denominator = wgss / float(n - k) calinski = numerator / denominator # append to the lists cluster_counts.append(k) wgss_values.append(wgss) neg_calinskis.append(-calinski) # Get the best cluster count according to the calinski index. # Do this trickery with negs so that it breaks ties # using the smallest number of clusters. neg_calinksi, best_k = min(zip(neg_calinskis, cluster_counts)) # create the response out = StringIO() print >> out, 'best cluster count: k = %d' % best_k if fs.verbose: print >> out print >> out, '(k, wgss, calinski):' for k, wgss, neg_calinski in zip(cluster_counts, wgss_values, neg_calinskis): row = (k, wgss, -neg_calinski) print >> out, '\t'.join(str(x) for x in row) # return the response return out.getvalue()