Esempio n. 1
0
if rank == 0:
    """
    executed by main MPI process 
    
    mpiexec -n <num_nodes> python -m mpi4py.futures mpi\mpi_bagging.py
    will create 1 dispatcher node with rank 0 and num_node-1 workers for the pool

    """

    ## generate Training set, Test set & V_0s
    X_train, y_train = generate_train_set(Config.N_train, Config.Delta,
                                          Config.d)
    X_test, y_test = generate_test_set(Config.N_test, Config.Delta, Config.d)

    V_0_train = generate_V_0(Config.N_train, Config.Delta, Config.d)
    V_0_test = generate_V_0(Config.N_test, Config.Delta, Config.d)

    logger.info(f"V_0_test = {V_0_test}")

    reference = create_GPR(Config.N_train)
    reference.fit(X_train, y_train)
    f_X = reference.predict(X_test)
    reference_error = normalized_error_VT(f_X, y_test, V_0_test)
    logger.info(f"reference error : {reference_error}")

    ## MPI execute
    results = []

    with MPIPoolExecutor() as executor:
        futures = []
    # combine the ensemble predictions into a single prediction for each trial of each hyperparam setting
    #
    predictions = []
    for result in results:
        predictor_results = result[2]  #M* [(m_ij,s_ij)] each of len trials
        if SOFTVOTING:
            bagging_predictions = trials_soft_prediction(
                predictor_results, Config.trials)
        else:
            bagging_predictions = trials_hard_prediction(
                predictor_results, Config.trials)

        predictions.append([result[0], result[1], bagging_predictions])

    ## compute the normalized error for all hyperparam runs & all trials
    V_0 = generate_V_0(100000, Config.Delta, Config.d)
    logger.info(f"V_0 = {V_0}")
    normalized_error_results = []
    for result in predictions:
        errors = []
        for index, prediction in enumerate(result[2]):
            error = normalized_error_VT(prediction,
                                        DataContainer.y_test_list[index], V_0)
            errors.append(error)
        normalized_error_results.append([result[0], result[1], errors])

    print(normalized_error_results)
    if WRITEBACK:
        write_results("mpi_regularized_bagging", normalized_error_results,
                      Config)