Esempio n. 1
0
    def getSelectorParameters(self):

        selectorRoulette1: ADHondtSelector = RouletteWheelSelector(
            {RouletteWheelSelector.ARG_EXPONENT: 1})
        selectorRoulette2: ADHondtSelector = RouletteWheelSelector(
            {RouletteWheelSelector.ARG_EXPONENT: 2})
        selectorRoulette3: ADHondtSelector = RouletteWheelSelector(
            {RouletteWheelSelector.ARG_EXPONENT: 3})
        selectorRoulette4: ADHondtSelector = RouletteWheelSelector(
            {RouletteWheelSelector.ARG_EXPONENT: 4})
        selectorRoulette5: ADHondtSelector = RouletteWheelSelector(
            {RouletteWheelSelector.ARG_EXPONENT: 5})
        selectorFixed: ADHondtSelector = TheMostVotedItemSelector({})

        aDict: Dict[str, object] = {}
        aDict[BatchDefMLFuzzyDHondtDirectOptimize.
              SLCTR_ROULETTE1] = selectorRoulette1
        aDict[BatchDefMLFuzzyDHondtDirectOptimize.
              SLCTR_ROULETTE2] = selectorRoulette2
        aDict[BatchDefMLFuzzyDHondtDirectOptimize.
              SLCTR_ROULETTE3] = selectorRoulette3
        aDict[BatchDefMLFuzzyDHondtDirectOptimize.
              SLCTR_ROULETTE4] = selectorRoulette4
        aDict[BatchDefMLFuzzyDHondtDirectOptimize.
              SLCTR_ROULETTE5] = selectorRoulette5
        aDict[BatchDefMLFuzzyDHondtDirectOptimize.SLCTR_FIXED] = selectorFixed

        aSubDict: Dict[str, object] = {
            selIdI: aDict[selIdI]
            for selIdI in aDict.keys() if selIdI in self.selectorIds
        }
        return aSubDict
    def getSelectorParameters(self):

        selectorRoulette1: ADHondtSelector = RouletteWheelSelector(
            {RouletteWheelSelector.ARG_EXPONENT: 1})
        selectorRoulette3: ADHondtSelector = RouletteWheelSelector(
            {RouletteWheelSelector.ARG_EXPONENT: 3})
        selectorFixed: ADHondtSelector = TheMostVotedItemSelector({})

        aDict: dict = {}
        aDict[BatchFuzzyDHondt.SLCTR_ROULETTE1] = selectorRoulette1
        aDict[BatchFuzzyDHondt.SLCTR_ROULETTE2] = selectorRoulette3
        aDict[BatchFuzzyDHondt.SLCTR_FIXED] = selectorFixed
        return aDict
def test01():

    print("Simulation: ML DHontThompsonSampling")

    jobID: str = "Roulette1"

    selector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1})

    rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

    pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
        "DHontThompsonSampling" + jobID, rIDs, rDescs,
        InputAggrDefinition.exportADescDHondtThompsonSampling(selector))

    batchID: str = "ml1mDiv90Ulinear0109R1"
    dataset: DatasetML = DatasetML.readDatasets()
    behaviourFile: str = BehavioursML.getFile(BehavioursML.BHVR_LINEAR0109)
    behavioursDF: DataFrame = BehavioursML.readFromFileMl1m(behaviourFile)

    model: DataFrame = PModelDHondtBanditsVotes(pDescr.getRecommendersIDs())

    eTool: AEvalTool = EvalToolDHondtBanditVotes({})

    # simulation of portfolio
    simulator: Simulator = Simulator(batchID, SimulationML, argsSimulationDict,
                                     dataset, behavioursDF)
    simulator.simulate([pDescr], [model], [eTool],
                       [HistoryHierDF(pDescr.getPortfolioID())])
Esempio n. 4
0
def test21():

    print("Simulation: ST BanditTS")

    jobID: str = "BanditTS"

    selector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1})

    rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

    pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
        "BanditTS" + jobID, rIDs, rDescs,
        InputAggrDefinition.exportADescBanditTS(selector))

    batchID: str = "stDiv90Ulinear0109R1"
    dataset: DatasetST = DatasetST.readDatasets()
    behaviourFile: str = BehavioursST.getFile(BehavioursST.BHVR_LINEAR0109)
    behavioursDF: DataFrame = BehavioursST.readFromFileST(behaviourFile)

    model: DataFrame = PModelBandit(pDescr.getRecommendersIDs())

    # simulation of portfolio
    simulator: Simulator = Simulator(batchID, SimulationST, argsSimulationDict,
                                     dataset, behavioursDF)
    simulator.simulate([pDescr], [model], [EvalToolBanditTS({})],
                       [HistoryHierDF(pDescr.getPortfolioID())])
def test01():

    print("Simulation: ML FuzzyDHondtDirectOptimize")

    jobID: str = "Roulette1"

    selector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1})

    rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

    pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
        "FuzzyDHondtDirectOptimize" + jobID, rIDs, rDescs,
        InputAggrDefinition.exportADescDHondtDirectOptimizeThompsonSampling(
            selector, "DCG"))

    batchID: str = "ml1mDiv90Ulinear0109R1"
    dataset: DatasetML = DatasetML.readDatasets()
    behaviourFile: str = BehavioursML.getFile(BehavioursML.BHVR_LINEAR0109)
    behavioursDF: DataFrame = BehavioursML.readFromFileMl1m(behaviourFile)

    #model:DataFrame = PModelDHont(pDescr.getRecommendersIDs())
    model: DataFrame = PModelDHondtBanditsVotes(pDescr.getRecommendersIDs())

    #lrClick:float = 0.03
    #lrView:float = lrClick / 500
    #eTool:AEvalTool = EvalToolDHondt({EvalToolDHondt.ARG_LEARNING_RATE_CLICKS: lrClick,
    #                                  EvalToolDHondt.ARG_LEARNING_RATE_VIEWS: lrView})
    eTool: AEvalTool = EvalToolDHondtBanditVotes({})
    # simulation of portfolio
    simulator: Simulator = Simulator(batchID, SimulationML, argsSimulationDict,
                                     dataset, behavioursDF)
    simulator.simulate([pDescr], [model], [eTool],
                       [HistoryHierDF(pDescr.getPortfolioID())])
def test21():

    print("Simulation: ST FuzzyDHondtDirectOptimize")

    jobID: str = "Roulette1"

    selector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 3})

    pProbToolOLin0802HLin1002: APenalization = PenalizationToolDefinition.exportProbPenaltyToolOStat08HLin1002(
        InputSimulatorDefinition.numberOfAggrItems)

    rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

    pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
        "FuzzyDHondtDirectOptimize" + jobID, rIDs, rDescs,
        InputAggrDefinition.exportADescDHondtDirectOptimizeThompsonSamplingINF(
            selector, pProbToolOLin0802HLin1002, "DCG"))

    batchID: str = "stDiv90Ulinear0109R1"
    dataset: DatasetST = DatasetST.readDatasets()
    behaviourFile: str = BehavioursST.getFile(BehavioursST.BHVR_LINEAR0109)
    behavioursDF: DataFrame = BehavioursST.readFromFileST(behaviourFile)

    model: DataFrame = PModelDHondtBanditsVotes(pDescr.getRecommendersIDs())

    #lrClick:float = 0.03
    #lrView:float = lrClick / 500
    #eTool:AEvalTool = EvalToolDHondt({EvalToolDHondt.ARG_LEARNING_RATE_CLICKS: lrClick,
    #                                  EvalToolDHondt.ARG_LEARNING_RATE_VIEWS: lrView})
    eTool: AEvalTool = EvalToolDHondtBanditVotes({})
    # simulation of portfolio
    simulator: Simulator = Simulator(batchID, SimulationST, argsSimulationDict,
                                     dataset, behavioursDF)
    simulator.simulate([pDescr], [model], [eTool],
                       [HistoryHierDF(pDescr.getPortfolioID())])
Esempio n. 7
0
def test01():
    print("Test 01")

    print("Running AggrBanditTSRun:")

    # number of recommended items
    N = 120

    # method results, items=[1,2,4,5,6,7,8,12,32,64,77]
    methodsResultDict:dict = {
        "metoda1": pd.Series([0.2, 0.1, 0.3, 0.3, 0.1], [32, 2, 8, 1, 4], name="rating"),
        "metoda2": pd.Series([0.1, 0.1, 0.2, 0.3, 0.3], [1, 5, 32, 6, 7], name="rating"),
        "metoda3": pd.Series([0.3, 0.1, 0.2, 0.3, 0.1], [7, 2, 77, 64, 12], name="rating")
    }
    # print(methodsResultDict)

    # methods parametes
    methodsParamsData:List[tuple] = [['metoda1', 5, 10, 1, 1], ['metoda2', 5, 12, 1, 1], ['metoda3', 6, 13, 1, 1]]
    methodsParamsDF:DataFrame = pd.DataFrame(methodsParamsData, columns=["methodID", "r", "n", "alpha0", "beta0"])
    methodsParamsDF.set_index("methodID", inplace=True)
    # print(methodsParamsDF)

    aggr:AggrBanditTS = AggrBanditTS(HistoryDF(""), {AggrBanditTS.ARG_SELECTOR:RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT:1})})

    itemIDs:List[tuple] = aggr.runWithResponsibility(methodsResultDict, methodsParamsDF, N)
    #itemIDs:List[tuple] = aggr.run(methodsResultDict, methodsParamsDF, N)
    print(itemIDs)
    def selectorOfRouletteWheelExpRatedItem(votesOfCandidatesDict: dict,
                                            exp: int):
        vcDict: dict = dict(
            map(lambda mIdJ: (mIdJ, votesOfCandidatesDict[mIdJ]**exp),
                votesOfCandidatesDict.keys()))

        votesOfCandidatesSer: Series = Series(vcDict, index=vcDict.keys())
        return RouletteWheelSelector.run(votesOfCandidatesSer)
    def getAllSelectors(self):

        selectorRoulette1:ADHondtSelector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT:1})
        selectorRoulette2:ADHondtSelector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT:2})
        selectorRoulette3:ADHondtSelector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT:3})
        selectorRoulette4:ADHondtSelector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT:4})
        selectorRoulette5:ADHondtSelector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT:5})
        selectorFixed:ADHondtSelector = TheMostVotedItemSelector({})

        aDict:Dict[str,object] = {}
        aDict[BatchDefMLFuzzyDHondt.SLCTR_ROULETTE1] = selectorRoulette1
        aDict[BatchDefMLFuzzyDHondt.SLCTR_ROULETTE2] = selectorRoulette2
        aDict[BatchDefMLFuzzyDHondt.SLCTR_ROULETTE3] = selectorRoulette3
        aDict[BatchDefMLFuzzyDHondt.SLCTR_ROULETTE4] = selectorRoulette4
        aDict[BatchDefMLFuzzyDHondt.SLCTR_ROULETTE5] = selectorRoulette5
        aDict[BatchDefMLFuzzyDHondt.SLCTR_FIXED] = selectorFixed

        return aDict
def test21():

    print("Simulation: ST ContextDHondtINF")

    jobID: str = "Roulette1"

    selector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1})

    #pProbToolOLin0802HLin1002:APenalization = PenalizationToolDefinition.exportProbPenaltyToolOStat08HLin1002(
    #    InputSimulatorDefinition.numberOfAggrItems)
    pToolOLin0802HLin1002: APenalization = PenalizationToolDefinition.exportPenaltyToolOLin0802HLin1002(
        InputSimulatorDefinition.numberOfAggrItems)

    rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

    dataset: ADataset = DatasetST.readDatasets()
    events = dataset.eventsDF
    serials = dataset.serialsDF

    historyDF: AHistory = HistoryDF("test01")

    # Init evalTool
    evalTool: AEvalTool = EvalToolContext({
        EvalToolContext.ARG_ITEMS:
        serials,  # ITEMS
        EvalToolContext.ARG_EVENTS:
        events,  # EVENTS (FOR CALCULATING HISTORY OF USER)
        EvalToolContext.ARG_DATASET:
        "st",  # WHAT DATASET ARE WE IN
        EvalToolContext.ARG_HISTORY:
        historyDF
    })  # empty instance of AHistory is OK for ST dataset

    pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
        "ContextDHondtNIF" + jobID, rIDs, rDescs,
        InputAggrDefinition.exportADescDContextHondtINF(
            selector, pToolOLin0802HLin1002, evalTool))

    batchID: str = "stDiv90Ulinear0109R1"
    dataset: DatasetST = DatasetST.readDatasets()
    behaviourFile: str = BehavioursST.getFile(BehavioursST.BHVR_LINEAR0109)
    behavioursDF: DataFrame = BehavioursST.readFromFileST(behaviourFile)

    model: DataFrame = PModelDHondt(pDescr.getRecommendersIDs())
    print(model)

    # simulation of portfolio
    simulator: Simulator = Simulator(batchID, SimulationST, argsSimulationDict,
                                     dataset, behavioursDF)
    simulator.simulate([pDescr], [model], [evalTool],
                       [HistoryHierDF(pDescr.getPortfolioID())])
def test01():

    print("Simulation: ML ContextDHondtINF")

    jobID: str = "Roulette1"

    selector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1})

    #pProbToolOLin0802HLin1002:APenalization = PenalizationToolDefinition.exportProbPenaltyToolOStat08HLin1002(
    #    InputSimulatorDefinition.numberOfAggrItems)
    pToolOLin0802HLin1002: APenalization = PenalizationToolDefinition.exportPenaltyToolOLin0802HLin1002(
        InputSimulatorDefinition.numberOfAggrItems)

    itemsDF: DataFrame = Items.readFromFileMl1m()
    usersDF: DataFrame = Users.readFromFileMl1m()

    historyDF: AHistory = HistoryDF("test01")

    eTool: AEvalTool = EvalToolContext({
        EvalToolContext.ARG_USERS: usersDF,
        EvalToolContext.ARG_ITEMS: itemsDF,
        EvalToolContext.ARG_DATASET: "ml",
        EvalToolContext.ARG_HISTORY: historyDF
    })

    rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

    pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
        "ContextDHondtINF" + jobID, rIDs, rDescs,
        InputAggrDefinition.exportADescDContextHondtINF(
            selector, pToolOLin0802HLin1002, eTool))

    batchID: str = "ml1mDiv90Ulinear0109R1"
    dataset: DatasetML = DatasetML.readDatasets()
    behaviourFile: str = BehavioursML.getFile(BehavioursML.BHVR_LINEAR0109)
    behavioursDF: DataFrame = BehavioursML.readFromFileMl1m(behaviourFile)

    model: DataFrame = PModelDHondt(pDescr.getRecommendersIDs())

    # simulation of portfolio
    simulator: Simulator = Simulator(batchID, SimulationML, argsSimulationDict,
                                     dataset, behavioursDF)
    simulator.simulate([pDescr], [model], [eTool],
                       [HistoryHierDF(pDescr.getPortfolioID())])
Esempio n. 12
0
def test02():
    print("Test 02")

    # number of recommended items
    N = 120

    # method results, items=[1,2,3,4,5,6,7,8,9,10]
    methodsResultDict = {
        "metoda1":
        pd.Series([0.2, 0.2, 0.2, 0.2, 0.2], [1, 3, 5, 7, 9], name="rating"),
        "metoda2":
        pd.Series([0.2, 0.2, 0.2, 0.2, 0.2], [2, 4, 6, 8, 10], name="rating"),
    }
    print(methodsResultDict)

    # methods parametes
    #methodsParamsData:List[tuple] = [['metoda1',0], ['metoda2',0]]
    methodsParamsData: List[tuple] = [['metoda1', 1], ['metoda2', 1]]
    methodsParamsDF: DataFrame = pd.DataFrame(methodsParamsData,
                                              columns=["methodID", "votes"])
    methodsParamsDF.set_index("methodID", inplace=True)

    #aggr:AggrDHont = AggrDHont(HistoryDF(), {AggrDHont.ARG_SELECTORFNC:(AggrDHont.selectorOfTheMostVotedItem,[])})
    #aggr:AggrDHont = AggrDHont(HistoryDF(), {AggrDHont.ARG_SELECTORFNC:(AggrDHont.selectorOfRouletteWheelRatedItem,[])})
    #aggr:AggrDHont = AggrDHont(HistoryDF(), {AggrDHont.ARG_SELECTORFNC:(AggrDHont.selectorOfRouletteWheelExpRatedItem,[1])})

    pToolOLin0802HLin1002: APenalization = PenalizationToolDefinition.exportPenaltyToolOLin0802HLin1002(
        20)

    aggr: AggrFuzzyDHondt = AggrFuzzyDHondtINF(
        HistoryDF(""), {
            AggrFuzzyDHondtINF.ARG_SELECTOR:
            RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1}),
            AggrFuzzyDHondtINF.ARG_PENALTY_TOOL:
            pToolOLin0802HLin1002
        })

    userID: int = 101
    ##itemIDs:int = aggr.run(methodsResultDict, methodsParamsDF, userID, N)
    itemIDs: int = aggr.run(methodsResultDict, methodsParamsDF, userID, N)
    #itemIDs:List[tuple] = aggr.runWithResponsibility(methodsResultDict, methodsParamsDF, userID, N)
    print(itemIDs)
Esempio n. 13
0
def getBanditTS():
  taskID:str = "Web" + "BanditTS" + "Roulette1"

  selector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1})

  rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

  pDescr:Portfolio1AggrDescription = Portfolio1AggrDescription(
    taskID, rIDs, rDescs, InputAggrDefinition.exportADescBanditTS(selector))

  dataset:DatasetST = DatasetST.readDatasets()
  history:AHistory = HistoryHierDF(taskID)

  port:APortfolio = pDescr.exportPortfolio(taskID, history)
  port.train(history, dataset)

  model:DataFrame = PModelBandit(pDescr.getRecommendersIDs())
  evalTool:AEvalTool = EvalToolBanditTS({})

  return (taskID, port, model, evalTool, history)
def test01():

    print("Simulation: ML FuzzyDHondtINF")

    jobID: str = "Roulette1"

    selector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1})

    pProbToolOLin0802HLin1002: APenalization = PenalizationToolDefinition.exportProbPenaltyToolOStat08HLin1002(
        InputSimulatorDefinition.numberOfAggrItems)

    rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

    pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
        "FuzzyDHondtINF" + jobID, rIDs, rDescs,
        InputAggrDefinition.exportADescDHondtINF(selector,
                                                 pProbToolOLin0802HLin1002))

    batchID: str = "ml1mDiv90Ulinear0109R1"
    dataset: DatasetML = DatasetML.readDatasets()
    behaviourFile: str = BehavioursML.getFile(BehavioursML.BHVR_LINEAR0109)
    behavioursDF: DataFrame = BehavioursML.readFromFileMl1m(behaviourFile)

    model: DataFrame = PModelDHondt(pDescr.getRecommendersIDs())

    lrClick: float = 0.03
    lrView: float = lrClick / 500
    eTool: AEvalTool = EvalToolDHondt({
        EvalToolDHondt.ARG_LEARNING_RATE_CLICKS:
        lrClick,
        EvalToolDHondt.ARG_LEARNING_RATE_VIEWS:
        lrView
    })

    # simulation of portfolio
    simulator: Simulator = Simulator(batchID, SimulationML, argsSimulationDict,
                                     dataset, behavioursDF)
    simulator.simulate([pDescr], [model], [eTool],
                       [HistoryHierDF(pDescr.getPortfolioID())])
Esempio n. 15
0
def test01():

    print("Simulation: ML ContextFuzzyDHondtDirectOptimize")

    jobID: str = "Roulette1"

    selector: ADHondtSelector = RouletteWheelSelector(
        {RouletteWheelSelector.ARG_EXPONENT: 1})

    itemsDF: DataFrame = Items.readFromFileMl1m()
    usersDF: DataFrame = Users.readFromFileMl1m()

    historyDF: AHistory = HistoryHierDF("test01")

    eTool: AEvalTool = EvalToolContext({
        EvalToolContext.ARG_USERS: usersDF,
        EvalToolContext.ARG_ITEMS: itemsDF,
        EvalToolContext.ARG_DATASET: "ml",
        EvalToolContext.ARG_HISTORY: historyDF
    })

    rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

    pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
        "ContextFuzzyDHondtDirectOptimize" + jobID, rIDs, rDescs,
        InputAggrDefinition.exportADescContextFuzzyDHondtDirectOptimize(
            selector, eTool))

    batchID: str = "ml1mDiv90Ulinear0109R1"
    dataset: DatasetML = DatasetML.readDatasets()
    behaviourFile: str = BehavioursML.getFile(BehavioursML.BHVR_LINEAR0109)
    behavioursDF: DataFrame = BehavioursML.readFromFileMl1m(behaviourFile)

    model: DataFrame = PModelDHondt(pDescr.getRecommendersIDs())

    # simulation of portfolio
    simulator: Simulator = Simulator(batchID, SimulationML, argsSimulationDict,
                                     dataset, behavioursDF)
    simulator.simulate([pDescr], [model], [eTool], [historyDF])
Esempio n. 16
0
def test21():

    print("Simulation: ST FuzzyDHondt")

    jobID: str = "Roulette1"

    selector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1})

    rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

    pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
        "FuzzyDHondt" + jobID, rIDs, rDescs,
        InputAggrDefinition.exportADescDHondt(selector))

    batchID: str = "stDiv90Ulinear0109R1"
    dataset: DatasetST = DatasetST.readDatasets()
    behaviourFile: str = BehavioursST.getFile(BehavioursST.BHVR_LINEAR0109)
    behavioursDF: DataFrame = BehavioursST.readFromFileST(behaviourFile)

    model: DataFrame = PModelDHondt(pDescr.getRecommendersIDs())
    print(model)

    lrClick: float = 0.1
    lrView: float = lrClick / 300
    evalTool: AEvalTool = EvalToolDHondt({
        EvalToolDHondt.ARG_LEARNING_RATE_CLICKS:
        lrClick,
        EvalToolDHondt.ARG_LEARNING_RATE_VIEWS:
        lrView
    })

    # simulation of portfolio
    simulator: Simulator = Simulator(batchID, SimulationST, argsSimulationDict,
                                     dataset, behavioursDF)
    simulator.simulate([pDescr], [model], [evalTool],
                       [HistoryHierDF(pDescr.getPortfolioID())])
 def selectorOfRouletteWheelRatedItem(votesOfCandidatesDict: dict):
     votesOfCandidatesSer: Series = Series(
         votesOfCandidatesDict, index=votesOfCandidatesDict.keys())
     return RouletteWheelSelector.run(votesOfCandidatesSer)
Esempio n. 18
0
 def selectorOfRouletteWheelRatedItem(resultOfMethod: Series):
     return RouletteWheelSelector.run(resultOfMethod)