Esempio n. 1
0
File: recsys.py Progetto: stes/nbot
 def __init__(self, mask, n):
     '''
     Constructor
     '''
     self.__wordmask = mask
     self.__lreg = LinearRegression(n)
     self.__training_set = []
     self.__ratings = []
Esempio n. 2
0
File: recsys.py Progetto: stes/nbot
class RecommenderSystem():
    '''
    System to rate new pages and estimate the relevance for the user
    '''

    def __init__(self, mask, n):
        '''
        Constructor
        '''
        self.__wordmask = mask
        self.__lreg = LinearRegression(n)
        self.__training_set = []
        self.__ratings = []
    
    def rate(self, document):
        '''
        rates the specified document
        @return: a value between 0 and 1 that specifies how well this
        document suits to the user
        '''
        f = gen_feature_vector(self.__wordmask, document)
        h = self.__lreg.estimate(array([f]))
        return float(h[0][0])
    
    def set_rate(self, document, rating):
        '''
        Lets the user rate a particular document
        @param rating: The user rating, between 0 (no interest) and 1
        (great interest)
        '''
        f = gen_feature_vector(self.__wordmask, document)
        self.__training_set.append(f)
        self.__ratings.append([rating])
    
    def train(self, iterations, learnrate):
        '''
        Trains the classifier
        @param iterations: the number of iterations
        @param learnrate: the learning rate
        '''
        [X, Y] = self.__gen_matrix()
        self.__lreg.train(iterations, learnrate, X, Y)
    
    def __gen_matrix(self):
        return [ array(self.__training_set), array(self.__ratings) ]