Esempio n. 1
0
def test_generalized_entropy_index():
    data = np.array([[0, 1],
                     [0, 0],
                     [1, 0],
                     [1, 1],
                     [1, 0],
                     [1, 0],
                     [2, 1],
                     [2, 0],
                     [2, 1],
                     [2, 1]])
    pred = data.copy()
    pred[[3, 9], -1] = 0
    pred[[4, 5], -1] = 1
    df = pd.DataFrame(data, columns=['feat', 'label'])
    df2 = pd.DataFrame(pred, columns=['feat', 'label'])
    bld = BinaryLabelDataset(df=df, label_names=['label'],
        protected_attribute_names=['feat'])
    bld2 = BinaryLabelDataset(df=df2, label_names=['label'],
        protected_attribute_names=['feat'])
    cm = ClassificationMetric(bld, bld2)

    assert cm.generalized_entropy_index() == 0.2

    pred = data.copy()
    pred[:, -1] = np.array([0, 1, 1, 0, 0, 0, 0, 1, 1, 1])
    df2 = pd.DataFrame(pred, columns=['feat', 'label'])
    bld2 = BinaryLabelDataset(df=df2, label_names=['label'],
        protected_attribute_names=['feat'])
    cm = ClassificationMetric(bld, bld2)

    assert cm.generalized_entropy_index() == 0.3
Esempio n. 2
0
def get_metric_reports(true_dataset,classfied_dataset,privileged_groups,unprivileged_groups):

	mirror_dataset=classfied_dataset.copy(deepcopy=True)
	mirror_dataset.labels=copy.deepcopy(true_dataset.labels)

	metric=ClassificationMetric(
		dataset=mirror_dataset,
		classified_dataset=classfied_dataset,
		unprivileged_groups=unprivileged_groups,
		privileged_groups=privileged_groups)
	#Measuring unfairness end
	
	report=OrderedDict()
	report['TPR']=metric.true_positive_rate()
	report['TNR']=metric.true_negative_rate()
	report['FPR']=metric.false_positive_rate()
	report['FNR']=metric.false_negative_rate()
	report['Balanced_Acc']=0.5*(report['TPR']+report['TNR'])
	report['Acc']=metric.accuracy()
	report["Statistical parity difference"]=metric.statistical_parity_difference()
	report["Disparate impact"]=metric.disparate_impact()
	report["Equal opportunity difference"]=metric.equal_opportunity_difference()
	report["Average odds difference"]=metric.average_odds_difference()
	report["Theil index"]=metric.theil_index()
	report["United Fairness"]=metric.generalized_entropy_index()

	return report
Esempio n. 3
0
def compute_metrics(dataset_true,
                    dataset_pred,
                    unprivileged_groups,
                    privileged_groups,
                    disp=True):
    """ Compute the key metrics """
    classified_metric_pred = ClassificationMetric(
        dataset_true,
        dataset_pred,
        unprivileged_groups=unprivileged_groups,
        privileged_groups=privileged_groups)
    metrics = OrderedDict()
    metrics["Classification accuracy"] = classified_metric_pred.accuracy()
    metrics["Balanced accuracy"] = 0.5 * (
        classified_metric_pred.true_positive_rate() +
        classified_metric_pred.true_negative_rate())
    metrics[
        "Statistical parity difference"] = classified_metric_pred.statistical_parity_difference(
        )
    metrics["Disparate impact"] = classified_metric_pred.disparate_impact()
    metrics[
        "Average odds difference"] = classified_metric_pred.average_odds_difference(
        )
    metrics[
        "Equal opportunity difference"] = classified_metric_pred.equal_opportunity_difference(
        )
    metrics["Theil index"] = classified_metric_pred.theil_index()
    metrics[
        "United Fairness"] = classified_metric_pred.generalized_entropy_index(
        )

    if disp:
        for k in metrics:
            print("%s = %.4f" % (k, metrics[k]))

    return metrics
Esempio n. 4
0
def comb_algorithm(l, m, n, dataset_original1, privileged_groups1,
                   unprivileged_groups1, optim_options1):

    dataset_original2 = copy.deepcopy(dataset_original1)
    privileged_groups2 = copy.deepcopy(privileged_groups1)
    unprivileged_groups2 = copy.deepcopy(unprivileged_groups1)
    optim_options2 = copy.deepcopy(optim_options1)

    print(l, m, n)
    dataset_orig_train, dataset_orig_vt = dataset_original2.split([0.7],
                                                                  shuffle=True)
    dataset_orig_valid, dataset_orig_test = dataset_orig_vt.split([0.5],
                                                                  shuffle=True)

    if l == 0:
        dataset_transf_train, dataset_transf_valid, dataset_transf_test = dataset_orig_train, dataset_orig_valid, dataset_orig_test
    else:
        pre_used = preAlgorithm[l - 1]
        dataset_transf_train, dataset_transf_valid, dataset_transf_test = Pre(
            pre_used, dataset_orig_train, dataset_orig_valid,
            dataset_orig_test, privileged_groups2, unprivileged_groups2,
            optim_options2)

    #assert (l,m,n)!=(2,0,0)
    #assert not np.all(dataset_transf_train.labels.flatten()==1.0)

    if m == 0:
        dataset_transf_valid_pred, dataset_transf_test_pred = train(
            dataset_transf_train, dataset_transf_valid, dataset_transf_test,
            privileged_groups2, unprivileged_groups2)
    else:
        in_used = inAlgorithm[m - 1]
        if in_used == "adversarial_debiasing":
            dataset_transf_valid_pred, dataset_transf_test_pred = adversarial_debiasing(
                dataset_transf_train, dataset_transf_valid,
                dataset_transf_test, privileged_groups2, unprivileged_groups2)
        elif in_used == "art_classifier":
            dataset_transf_valid_pred, dataset_transf_test_pred = art_classifier(
                dataset_transf_train, dataset_transf_valid,
                dataset_transf_test, privileged_groups2, unprivileged_groups2)
        elif in_used == "prejudice_remover":
            for key, value in privileged_groups2[0].items():
                sens_attr = key
            dataset_transf_valid_pred, dataset_transf_test_pred = prejudice_remover(
                dataset_transf_train, dataset_transf_valid,
                dataset_transf_test, privileged_groups2, unprivileged_groups2,
                sens_attr)

    if n == 0:
        dataset_transf_test_pred_transf = dataset_transf_test_pred

    else:
        post_used = postAlgorithm[n - 1]
        if post_used == "calibrated_eqodds":
            cpp = CalibratedEqOddsPostprocessing(
                privileged_groups=privileged_groups2,
                unprivileged_groups=unprivileged_groups2,
                cost_constraint=cost_constraint,
                seed=1)
            cpp = cpp.fit(dataset_transf_valid, dataset_transf_valid_pred)
            dataset_transf_test_pred_transf = cpp.predict(
                dataset_transf_test_pred)

        elif post_used == "eqodds":
            EO = EqOddsPostprocessing(unprivileged_groups=unprivileged_groups2,
                                      privileged_groups=privileged_groups2,
                                      seed=1)
            EO = EO.fit(dataset_transf_valid, dataset_transf_valid_pred)
            dataset_transf_test_pred_transf = EO.predict(
                dataset_transf_test_pred)

        elif post_used == "reject_option":
            ROC = RejectOptionClassification(
                unprivileged_groups=unprivileged_groups2,
                privileged_groups=privileged_groups2,
                low_class_thresh=0.01,
                high_class_thresh=0.99,
                num_class_thresh=100,
                num_ROC_margin=50,
                metric_name=allowed_metrics[0],
                metric_ub=metric_ub,
                metric_lb=metric_lb)
            ROC = ROC.fit(dataset_transf_valid, dataset_transf_valid_pred)
            dataset_transf_test_pred_transf = ROC.predict(
                dataset_transf_test_pred)

    metric = ClassificationMetric(dataset_transf_test,
                                  dataset_transf_test_pred_transf,
                                  unprivileged_groups=unprivileged_groups2,
                                  privileged_groups=privileged_groups2)

    metrics = OrderedDict()
    metrics["Classification accuracy"] = metric.accuracy()
    TPR = metric.true_positive_rate()
    TNR = metric.true_negative_rate()
    bal_acc_nodebiasing_test = 0.5 * (TPR + TNR)
    metrics["Balanced classification accuracy"] = bal_acc_nodebiasing_test
    metrics[
        "Statistical parity difference"] = metric.statistical_parity_difference(
        )
    metrics["Disparate impact"] = metric.disparate_impact()
    metrics[
        "Equal opportunity difference"] = metric.equal_opportunity_difference(
        )
    metrics["Average odds difference"] = metric.average_odds_difference()
    metrics["Theil index"] = metric.theil_index()
    metrics["United Fairness"] = metric.generalized_entropy_index()
    # print(metrics)

    feature = "["
    for m in metrics:
        feature = feature + " " + str(round(metrics[m], 4))
    feature = feature + "]"

    return feature
def compute_metrics(model, X_test, y_test, X_train, y_train, dataset_test, 
                    unprivileged_groups, privileged_groups, protect_attribute, 
                    print_result):
    """
    Calculate and return: model accuracy and fairness metrics
    
    Parameters
    ----------
    model: scikit-learn classifier    
    X_test: numpy 2d array
    y_test: numpy 1d array
    X_train: numpy 2d array
    y_train: numpy 1d array
    dataset_test: aif360.datasets.BinaryLabelDataset
    unprivileged_groups: list<dict>
        Dictionary where the key is the name of the sensitive column in the 
        dataset, and the value is the value of the unprivileged group in the
        dataset
    privileged_groups: list<dict>
        Dictionary where the key is the name of the sensitive column in the 
        dataset, and the value is the value of the privileged group in the
        dataset
    protect_attribute
    print_result
    """
    result = {}
    
    y_pred_test = model.predict(X_test)
    result['acc_test'] = accuracy_score(y_true=y_test, y_pred=y_pred_test)
    y_pred_train = model.predict(X_train)
    result['acc_train'] = accuracy_score(y_true=y_train, y_pred=y_pred_train)
    
    dataset_pred = dataset_test.copy()
    dataset_pred.labels = y_pred_test

    bin_metric = BinaryLabelDatasetMetric(dataset_pred, 
                                          unprivileged_groups=unprivileged_groups,
                                          privileged_groups=privileged_groups)
    result['disp_impact'] = bin_metric.disparate_impact()
    result['stat_parity'] = bin_metric.mean_difference()

    classif_metric = ClassificationMetric(dataset_test, dataset_pred, 
                                          unprivileged_groups=unprivileged_groups,
                                          privileged_groups=privileged_groups)
    result['avg_odds'] = classif_metric.average_odds_difference()
    result['equal_opport'] = classif_metric.equal_opportunity_difference()
    result['false_discovery_rate'] = classif_metric.false_discovery_rate_difference()
    result['entropy_index'] = classif_metric.generalized_entropy_index()
    result['acc_test_clf'] = classif_metric.accuracy(privileged=None)
    result['acc_test_priv'] = classif_metric.accuracy(privileged=True)
    result['acc_test_unpriv'] = classif_metric.accuracy(privileged=False)
    
    result['consistency'] = consitency(X_test, y_pred_test, protect_attribute, n_neighbors=5)
    result['counterfactual'] = counterfactual(X_test, model, protect_attribute)
    
    if print_result:
        print("Train accuracy: ", result['acc_train'])
        print("Test accuracy: ", result['acc_test'])
        print("Test accuracy clf: ", result['acc_test_clf'])
        print("Test accuracy priv.: ", result['acc_test_priv'])
        print("Test accuracy unpriv.: ", result['acc_test_unpriv'])
        print('Disparate impact: ', result['disp_impact'])
        print('Mean difference: ', result['stat_parity'])
        print('Average odds difference:', result['avg_odds'])
        print('Equality of opportunity:', result['equal_opport'])
        print('False discovery rate difference:', result['false_discovery_rate'])
        print('Generalized entropy index:', result['entropy_index'])
        print('Consistency: ', result['consistency'])
        print('Counterfactual fairness: ', result['counterfactual'])

    return result
Esempio n. 6
0
# Mapping the groups defined by the sensitive attribute
unprivileged_map = [{'race': 1}]
privileged_map = [{'race': 0}]

#%%

# =============================================================================
# TESTING FAIRNESS METRIC FUNCTIONALITY OF AIF360
# =============================================================================
# Compute the classification metrics for the black vs white comparison
fairness_metrics = ClassificationMetric(dataset=bld_true,
                                        classified_dataset=bld_pred,
                                        unprivileged_groups=unprivileged_map,
                                        privileged_groups=privileged_map)

fairness_metrics.generalized_entropy_index()

# Confusion matrices for total pop, whites, blacks
conf_mat_total = fairness_metrics.binary_confusion_matrix(privileged=None)
conf_mat_white = fairness_metrics.binary_confusion_matrix(privileged=True)
conf_mat_black = fairness_metrics.binary_confusion_matrix(privileged=False)

for i, j in conf_mat_total.items():
    print('The number of ' + i + 's is ' + str(j))

type(conf_mat_total)
conf_mat_total.keys()
conf_mat_total.values()
conf_mat_keys_ordered = ['TN', 'FP', 'FN', 'TP']
conf_mat_values_ordered = []
Esempio n. 7
0
def comb_algorithm(l, m, n, dataset_original1, privileged_groups1,
                   unprivileged_groups1, optim_options1):

    dataset_original2 = copy.deepcopy(dataset_original1)
    privileged_groups2 = copy.deepcopy(privileged_groups1)
    unprivileged_groups2 = copy.deepcopy(unprivileged_groups1)
    optim_options2 = copy.deepcopy(optim_options1)

    print(l, m, n)
    dataset_original_train, dataset_original_vt = dataset_original2.split(
        [0.7], shuffle=True)
    dataset_original_valid, dataset_original_test = dataset_original_vt.split(
        [0.5], shuffle=True)
    dataset_original_test.labels = dataset_original_test.labels
    print('=======================')
    #print(dataset_original_test.labels)
    dataset_orig_train = copy.deepcopy(dataset_original_train)
    dataset_orig_valid = copy.deepcopy(dataset_original_valid)
    dataset_orig_test = copy.deepcopy(dataset_original_test)

    if l == 0:
        dataset_transfer_train = copy.deepcopy(dataset_original_train)
        dataset_transfer_valid = copy.deepcopy(dataset_original_valid)
        dataset_transfer_test = copy.deepcopy(dataset_original_test)
        #dataset_transf_train, dataset_transf_valid, dataset_transf_test = dataset_orig_train, dataset_orig_valid, dataset_orig_test
    else:
        pre_used = preAlgorithm[l - 1]
        dataset_transfer_train, dataset_transfer_valid, dataset_transfer_test = Pre(
            pre_used, dataset_orig_train, dataset_orig_valid,
            dataset_orig_test, privileged_groups2, unprivileged_groups2,
            optim_options2)

    dataset_transf_train = copy.deepcopy(dataset_transfer_train)
    dataset_transf_valid = copy.deepcopy(dataset_transfer_valid)
    dataset_transf_test = copy.deepcopy(dataset_transfer_test)
    if m == 0:
        dataset_transfer_valid_pred, dataset_transfer_test_pred = plain_model(
            dataset_transf_train, dataset_transf_valid, dataset_transf_test,
            privileged_groups2, unprivileged_groups2)
    else:
        in_used = inAlgorithm[m - 1]
        if in_used == "adversarial_debiasing":
            dataset_transfer_valid_pred, dataset_transfer_test_pred = adversarial_debiasing(
                dataset_transf_train, dataset_transf_valid,
                dataset_transf_test, privileged_groups2, unprivileged_groups2)
        elif in_used == "art_classifier":
            dataset_transfer_valid_pred, dataset_transfer_test_pred = art_classifier(
                dataset_transf_train, dataset_transf_valid,
                dataset_transf_test, privileged_groups2, unprivileged_groups2)
        elif in_used == "prejudice_remover":
            for key, value in privileged_groups2[0].items():
                sens_attr = key
            dataset_transfer_valid_pred, dataset_transfer_test_pred = prejudice_remover(
                dataset_transf_train, dataset_transf_valid,
                dataset_transf_test, privileged_groups2, unprivileged_groups2,
                sens_attr)

    dataset_transf_valid_pred = copy.deepcopy(dataset_transfer_valid_pred)
    dataset_transf_test_pred = copy.deepcopy(dataset_transfer_test_pred)
    if n == 0:
        dataset_transf_test_pred_transf = copy.deepcopy(
            dataset_transfer_test_pred)

    else:
        post_used = postAlgorithm[n - 1]
        if post_used == "calibrated_eqodds":
            cpp = CalibratedEqOddsPostprocessing(
                privileged_groups=privileged_groups2,
                unprivileged_groups=unprivileged_groups2,
                cost_constraint=cost_constraint)
            cpp = cpp.fit(dataset_transfer_valid, dataset_transf_valid_pred)
            dataset_transf_test_pred_transf = cpp.predict(
                dataset_transf_test_pred)

        elif post_used == "eqodds":
            EO = EqOddsPostprocessing(unprivileged_groups=unprivileged_groups2,
                                      privileged_groups=privileged_groups2)
            EO = EO.fit(dataset_transfer_valid, dataset_transf_valid_pred)
            dataset_transf_test_pred_transf = EO.predict(
                dataset_transf_test_pred)

        elif post_used == "reject_option":
            #dataset_transf_test_pred_transf = reject_option(dataset_transf_valid, dataset_transf_valid_pred, dataset_transf_test, dataset_transf_test_pred, privileged_groups2, unprivileged_groups2)

            ROC = RejectOptionClassification(
                unprivileged_groups=unprivileged_groups2,
                privileged_groups=privileged_groups2)
            ROC = ROC.fit(dataset_transfer_valid, dataset_transf_valid_pred)
            dataset_transf_test_pred_transf = ROC.predict(
                dataset_transf_test_pred)

    #print('=======================')
    org_labels = dataset_orig_test.labels
    print(dataset_orig_test.labels)
    #print(dataset_transf_test.labels)
    #print('=======================')
    pred_labels = dataset_transf_test_pred.labels
    print(dataset_transf_test_pred.labels)

    true_pred = org_labels == pred_labels
    print("acc after in: ", float(np.sum(true_pred)) / pred_labels.shape[1])
    #print('=======================')
    #print(dataset_transf_test_pred_transf.labels)
    #print(dataset_transf_test_pred_transf.labels.shape)

    metric = ClassificationMetric(dataset_transfer_test,
                                  dataset_transf_test_pred_transf,
                                  unprivileged_groups=unprivileged_groups2,
                                  privileged_groups=privileged_groups2)

    metrics = OrderedDict()
    metrics["Classification accuracy"] = metric.accuracy()
    TPR = metric.true_positive_rate()
    TNR = metric.true_negative_rate()
    bal_acc_nodebiasing_test = 0.5 * (TPR + TNR)
    metrics["Balanced classification accuracy"] = bal_acc_nodebiasing_test
    metrics[
        "Statistical parity difference"] = metric.statistical_parity_difference(
        )
    metrics["Disparate impact"] = metric.disparate_impact()
    metrics[
        "Equal opportunity difference"] = metric.equal_opportunity_difference(
        )
    metrics["Average odds difference"] = metric.average_odds_difference()
    metrics["Theil index"] = metric.theil_index()
    metrics["United Fairness"] = metric.generalized_entropy_index()

    feature = []
    feature_str = "["
    for m in metrics:
        data = round(metrics[m], 4)
        feature.append(data)
        feature_str = feature_str + str(data) + " "
    feature_str = feature_str + "]"

    return feature, feature_str
Esempio n. 8
0
def compute_metrics(model, X_test, y_test, X_train, y_train, dataset_test,
                    dataset_name, model_name, unprivileged_groups,
                    privileged_groups, position):
    """
    Calculate and return: model accuracy and fairness metrics
    
    Parameters
    ----------
    model: scikit-learn classifier    
    X_test: numpy 2d array
    y_test: numpy 1d array
    X_train: numpy 2d array
    y_train: numpy 1d array
    dataset_test: aif360.datasets.BinaryLabelDataset
    dataset_name: string
        Dataset name used in the analysis
    model_name: string
    unprivileged_groups: list<dict>
        Dictionary where the key is the name of the sensitive column in the 
        dataset, and the value is the value of the unprivileged group in the
        dataset
    privileged_groups: list<dict>
        Dictionary where the key is the name of the sensitive column in the 
        dataset, and the value is the value of the privileged group in the
        dataset
    position: int
        Column position of the sensitive group in the dataset 
    """

    y_pred_test = model.predict(X_test)
    acc_test = accuracy_score(y_true=y_test, y_pred=y_pred_test)
    print("Test accuracy: ", acc_test)
    y_pred_train = model.predict(X_train)
    acc_train = accuracy_score(y_true=y_train, y_pred=y_pred_train)
    print("Train accuracy: ", acc_train)

    dataset_pred = dataset_test.copy()
    dataset_pred.labels = y_pred_test

    bin_metric = BinaryLabelDatasetMetric(
        dataset_pred,
        unprivileged_groups=unprivileged_groups,
        privileged_groups=privileged_groups)
    disparate_impact_bin = bin_metric.disparate_impact()
    print('Disparate impact: ', disparate_impact_bin)
    mean_difference = bin_metric.mean_difference()
    print('Mean difference: ', mean_difference)

    classif_metric = ClassificationMetric(
        dataset_test,
        dataset_pred,
        unprivileged_groups=unprivileged_groups,
        privileged_groups=privileged_groups)
    classif_disparete_impact = classif_metric.disparate_impact()
    avg_odds = classif_metric.average_odds_difference()
    print('Average odds difference:', avg_odds)
    equal_opport = classif_metric.equal_opportunity_difference()
    print('Equality of opportunity:', equal_opport)
    false_discovery_rate = classif_metric.false_discovery_rate_difference()
    print('False discovery rate difference:', false_discovery_rate)
    entropy_index = classif_metric.generalized_entropy_index()
    print('Generalized entropy index:', entropy_index)

    cons_comp = consitency_mod(bin_metric, position, n_neighbors=5)
    print('Consistency: ', cons_comp)

    result = (dataset_name, model_name, acc_test, disparate_impact_bin,
              mean_difference, classif_disparete_impact, avg_odds,
              equal_opport, false_discovery_rate, entropy_index, cons_comp)

    return result