import aim aim.init() from aim import Profiler Profiler.init() import tensorflow as tf # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) from examples.tf_profiler_model import neural_net learning_rate = 0.1 num_steps = 500 batch_size = 128 display_step = 100 # Network Parameters n_hidden_1 = 256 # 1st layer number of neurons n_hidden_2 = 256 # 2nd layer number of neurons num_input = 784 # MNIST data input (img shape: 28*28) num_classes = 10 # MNIST total classes (0-9 digits) # tf Graph input X = tf.placeholder('float', [None, num_input]) Y = tf.placeholder('float', [None, num_classes]) # Store layers weight & bias weights = {
from torchvision import models from PIL import Image import torch import torchvision.transforms as T import numpy as np from aim import track import aim aim.init(True) images = [ Image.open('./data/bird.jpg'), Image.open('./data/car.jpeg'), ] labels = { 0: 'background', 1: 'aeroplane', 2: 'bicycle', 3: 'bird', 4: 'boat', 5: 'bottle', 6: 'bus', 7: 'car', 8: 'cat', 9: 'chair', 10: 'cow', 11: 'diningtable', 12: 'dog', 13: 'horse',
import time import tensorflow as tf # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data import aim aim.init(overwrite=True) from aim import Profiler Profiler.init(auto_detect_cycles=False, aggregate=Profiler.MEAN) mnist = input_data.read_data_sets('/tmp/data/', one_hot=True) learning_rate = 0.1 num_steps = 500 batch_size = 128 display_step = 100 # Network Parameters n_hidden_1 = 256 n_hidden_2 = 256 num_input = 784 num_classes = 10 # tf Graph input X = tf.placeholder('float', [None, num_input]) Y = tf.placeholder('float', [None, num_classes]) # Store layers weight & bias weights = {
import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras import backend as K import aim # Init aim with overwrite=False, every run will be committed and pushed aim.init(overwrite=False) from aim import Profiler # initialize profiler Profiler.init(sec_interval=2, squash=10) batch_size = 128 num_classes = 10 epochs = 12 # input image dimensions img_rows, img_cols = 28, 28 # the data, split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)