Esempio n. 1
0
    def test_layer_database_with_dynamic_shape(self):
        """ test layer database creation with different input shapes"""
        # create tf.compat.v1.Session and initialize the weights and biases with zeros
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        graph = tf.Graph()

        with graph.as_default():
            # by default, model will be constructed in default graph
            input_placeholder = tf.compat.v1.placeholder(tf.float32, [None, None, None, 3], 'input')
            x = tf.keras.layers.Conv2D(8, (2, 2), padding='SAME')(input_placeholder)
            x = tf.keras.layers.BatchNormalization(momentum=.3, epsilon=.65)(x)
            x = tf.keras.layers.Conv2D(8, (1, 1), padding='SAME', activation=tf.nn.tanh)(x)
            x = tf.keras.layers.BatchNormalization(momentum=.4, epsilon=.25)(x)
            init = tf.compat.v1.global_variables_initializer()

        # create session with graph
        sess = tf.compat.v1.Session(graph=graph, config=config)
        sess.run(init)

        layer_db = LayerDatabase(model=sess, input_shape=(1, 224, 224, 3), working_dir=None, starting_ops=['input'],
                                 ending_ops=['batch_normalization_1/cond/Merge'])

        conv1_layer = layer_db.find_layer_by_name('conv2d/Conv2D')
        conv2_layer = layer_db.find_layer_by_name('conv2d_1/Conv2D')

        self.assertEqual(conv1_layer.output_shape, [1, 8, 224, 224])
        self.assertEqual(conv2_layer.output_shape, [1, 8, 224, 224])

        layer_db.destroy()

        # 2) try with different input shape

        # create another session with graph
        sess = tf.compat.v1.Session(graph=graph, config=config)
        sess.run(init)

        batch_size = 32
        layer_db = LayerDatabase(model=sess, input_shape=(batch_size, 28, 28, 3), working_dir=None,
                                 starting_ops=['input'], ending_ops=['batch_normalization_1/cond/Merge'])

        conv1_layer = layer_db.find_layer_by_name('conv2d/Conv2D')
        conv2_layer = layer_db.find_layer_by_name('conv2d_1/Conv2D')

        self.assertEqual(conv1_layer.output_shape, [32, 8, 28, 28])
        self.assertEqual(conv2_layer.output_shape, [32, 8, 28, 28])

        layer_db.destroy()
Esempio n. 2
0
    def test_layer_database_destroy(self):

        # create tf.compat.v1.Session and initialize the weights and biases with zeros
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        # create session with graph
        sess = tf.compat.v1.Session(graph=tf.Graph(), config=config)

        with sess.graph.as_default():
            # by default, model will be constructed in default graph
            _ = mnist_tf_model.create_model(data_format='channels_last')
            init = tf.compat.v1.global_variables_initializer()

        sess.run(init)
        layer_db = LayerDatabase(model=sess, input_shape=(1, 28, 28, 1), working_dir=None)

        layer_db.destroy()

        self.assertRaises(RuntimeError, lambda: sess.run(init))
        # delete temp directory
        shutil.rmtree(str('./temp_meta/'))