Esempio n. 1
0
    def test_prune_model_2_layers(self):
        """ Punning two layers with 0.5 comp-ratio in MNIST"""

        # create tf.compat.v1.Session and initialize the weights and biases with zeros
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        # create session with graph
        sess = tf.compat.v1.Session(graph=tf.Graph(), config=config)

        with sess.graph.as_default():
            # by default, model will be constructed in default graph
            _ = mnist_tf_model.create_model(data_format='channels_last')
            sess.run(tf.compat.v1.global_variables_initializer())

        # Create a layer database
        orig_layer_db = LayerDatabase(model=sess,
                                      input_shape=(1, 28, 28, 1),
                                      working_dir=None)
        conv1 = orig_layer_db.find_layer_by_name('conv2d/Conv2D')
        conv2 = orig_layer_db.find_layer_by_name('conv2d_1/Conv2D')

        layer_comp_ratio_list = [
            LayerCompRatioPair(conv1, Decimal(0.5)),
            LayerCompRatioPair(conv2, Decimal(0.5))
        ]

        spatial_svd_pruner = SpatialSvdPruner()
        comp_layer_db = spatial_svd_pruner.prune_model(orig_layer_db,
                                                       layer_comp_ratio_list,
                                                       CostMetric.mac,
                                                       trainer=None)

        conv1_a = comp_layer_db.find_layer_by_name('conv2d_a/Conv2D')
        conv1_b = comp_layer_db.find_layer_by_name('conv2d_b/Conv2D')

        # Weights shape [kh, kw, Nic, Noc]
        self.assertEqual([5, 1, 1, 2],
                         conv1_a.module.inputs[1].get_shape().as_list())
        self.assertEqual([1, 5, 2, 32],
                         conv1_b.module.inputs[1].get_shape().as_list())

        conv2_a = comp_layer_db.find_layer_by_name('conv2d_1_a/Conv2D')
        conv2_b = comp_layer_db.find_layer_by_name('conv2d_1_b/Conv2D')

        self.assertEqual([5, 1, 32, 53],
                         conv2_a.module.inputs[1].get_shape().as_list())
        self.assertEqual([1, 5, 53, 64],
                         conv2_b.module.inputs[1].get_shape().as_list())

        for layer in comp_layer_db:
            print("Layer: " + layer.name)
            print("   Module: " + str(layer.module.name))

        tf.compat.v1.reset_default_graph()
        sess.close()
        # delete temp directory
        shutil.rmtree(str('./temp_meta/'))
Esempio n. 2
0
    def test_prune_model_tf_slim(self):
        """ Punning a model with tf slim api """

        # create tf.compat.v1.Session and initialize the weights and biases with zeros
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        # create session with graph
        sess = tf.compat.v1.Session(graph=tf.Graph(), config=config)

        with sess.graph.as_default():
            # by default, model will be constructed in default graph
            x = tf.compat.v1.placeholder(tf.float32, [1, 32, 32, 3])
            _ = tf_slim_basic_model(x)
            sess.run(tf.compat.v1.global_variables_initializer())

        conn_graph_orig = ConnectedGraph(sess.graph, ['Placeholder'],
                                         ['tf_slim_model/Softmax'])
        num_ops_orig = len(conn_graph_orig.get_all_ops())

        # Create a layer database
        orig_layer_db = LayerDatabase(model=sess,
                                      input_shape=(1, 32, 32, 3),
                                      working_dir=None)
        conv1 = orig_layer_db.find_layer_by_name('Conv_1/Conv2D')
        conv1_bias = BiasUtils.get_bias_as_numpy_data(orig_layer_db.model,
                                                      conv1.module)

        layer_comp_ratio_list = [LayerCompRatioPair(conv1, Decimal(0.5))]

        spatial_svd_pruner = SpatialSvdPruner()
        comp_layer_db = spatial_svd_pruner.prune_model(orig_layer_db,
                                                       layer_comp_ratio_list,
                                                       CostMetric.mac,
                                                       trainer=None)
        # Check that svd added these ops
        _ = comp_layer_db.model.graph.get_operation_by_name('Conv_1_a/Conv2D')
        _ = comp_layer_db.model.graph.get_operation_by_name('Conv_1_b/Conv2D')

        conn_graph_new = ConnectedGraph(comp_layer_db.model.graph,
                                        ['Placeholder'],
                                        ['tf_slim_model/Softmax'])
        num_ops_new = len(conn_graph_new.get_all_ops())
        self.assertEqual(num_ops_orig + 1, num_ops_new)
        bias_add_op = comp_layer_db.model.graph.get_operation_by_name(
            'Conv_1_b/BiasAdd')
        conv_1_b_op = comp_layer_db.model.graph.get_operation_by_name(
            'Conv_1_b/Conv2D')
        self.assertEqual(
            conn_graph_new._module_identifier.get_op_info(bias_add_op),
            conn_graph_new._module_identifier.get_op_info(conv_1_b_op))
        self.assertTrue(
            np.array_equal(
                conv1_bias,
                BiasUtils.get_bias_as_numpy_data(comp_layer_db.model,
                                                 conv_1_b_op)))
Esempio n. 3
0
    def test_prune_conv_no_bias(self):
        """ Test spatial svd on a conv layer with no bias """
        # create tf.compat.v1.Session and initialize the weights and biases with zeros
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        # create session with graph
        sess = tf.compat.v1.Session(graph=tf.Graph(), config=config)

        with sess.graph.as_default():
            # by default, model will be constructed in default graph
            inputs = tf.keras.Input(shape=(
                32,
                32,
                3,
            ))
            x = tf.keras.layers.Conv2D(32, (3, 3), use_bias=False)(inputs)
            _ = tf.keras.layers.Flatten()(x)
            sess.run(tf.compat.v1.global_variables_initializer())

        # Create a layer database
        orig_layer_db = LayerDatabase(model=sess,
                                      input_shape=(1, 32, 32, 3),
                                      working_dir=None)
        conv_op = orig_layer_db.find_layer_by_name('conv2d/Conv2D')

        layer_comp_ratio_list = [LayerCompRatioPair(conv_op, Decimal(0.5))]

        spatial_svd_pruner = SpatialSvdPruner()
        comp_layer_db = spatial_svd_pruner.prune_model(orig_layer_db,
                                                       layer_comp_ratio_list,
                                                       CostMetric.mac,
                                                       trainer=None)
        # Check that svd added these ops
        _ = comp_layer_db.model.graph.get_operation_by_name('conv2d_a/Conv2D')
        conv2d_b_op = comp_layer_db.model.graph.get_operation_by_name(
            'conv2d_b/Conv2D')
        reshape_op = comp_layer_db.model.graph.get_operation_by_name(
            'flatten/Reshape')
        self.assertEqual(conv2d_b_op, reshape_op.inputs[0].op)
    def test_select_per_layer_comp_ratios_with_spatial_svd_pruner(self):

        pruner = SpatialSvdPruner()
        eval_func = unittest.mock.MagicMock()
        rounding_algo = unittest.mock.MagicMock()
        eval_func.side_effect = [
            10, 20, 30, 40, 50, 60, 70, 80, 90, 11, 21, 31, 35, 40, 45, 50, 55,
            60
        ]
        rounding_algo.round.side_effect = [
            0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4,
            0.5, 0.6, 0.7, 0.8, 0.9
        ]

        # create tf.compat.v1.Session and initialize the weights and biases with zeros
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        # create session with graph
        sess = tf.compat.v1.Session(graph=tf.Graph(), config=config)

        with sess.graph.as_default():
            # by default, model will be constructed in default graph
            _ = mnist_tf_model.create_model(data_format='channels_last')
            sess.run(tf.compat.v1.global_variables_initializer())

        # Create a layer database
        layer_db = LayerDatabase(model=sess,
                                 input_shape=(1, 28, 28, 1),
                                 working_dir=None)

        selected_layers = [
            layer for layer in layer_db if layer.module.type == 'Conv2D'
        ]
        layer_db.mark_picked_layers(selected_layers)

        url, process = start_bokeh_server_session(8006)
        bokeh_session = BokehServerSession(url=url, session_id="compression")

        # Instantiate child
        greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo(
            layer_db=layer_db,
            pruner=pruner,
            cost_calculator=SpatialSvdCostCalculator(),
            eval_func=eval_func,
            eval_iterations=20,
            cost_metric=CostMetric.mac,
            target_comp_ratio=Decimal(0.4),
            num_candidates=10,
            use_monotonic_fit=True,
            saved_eval_scores_dict=None,
            comp_ratio_rounding_algo=rounding_algo,
            use_cuda=False,
            bokeh_session=bokeh_session)

        layer_comp_ratio_list, stats = greedy_algo.select_per_layer_comp_ratios(
        )

        original_cost = SpatialSvdCostCalculator.compute_model_cost(layer_db)

        for layer in layer_db:
            if layer not in selected_layers:
                layer_comp_ratio_list.append(LayerCompRatioPair(layer, None))
        compressed_cost = SpatialSvdCostCalculator.calculate_compressed_cost(
            layer_db, layer_comp_ratio_list, CostMetric.mac)

        actual_compression_ratio = compressed_cost.mac / original_cost.mac
        self.assertTrue(
            math.isclose(Decimal(0.3), actual_compression_ratio, abs_tol=0.8))

        print('\n')
        for pair in layer_comp_ratio_list:
            print(pair)

        tf.compat.v1.reset_default_graph()
        sess.close()

        bokeh_session.server_session.close("test complete")
        os.killpg(os.getpgid(process.pid), signal.SIGTERM)
    def test_eval_scores_with_spatial_svd_pruner(self):

        pruner = SpatialSvdPruner()
        eval_func = unittest.mock.MagicMock()
        eval_func.side_effect = [
            90, 80, 70, 60, 50, 40, 30, 20, 10, 91, 81, 71, 61, 51, 41, 31, 21,
            11
        ]

        # create tf.compat.v1.Session and initialize the weights and biases with zeros
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        # create session with graph
        sess = tf.compat.v1.Session(graph=tf.Graph(), config=config)

        with sess.graph.as_default():
            # by default, model will be constructed in default graph
            _ = mnist_tf_model.create_model(data_format='channels_last')
            sess.run(tf.compat.v1.global_variables_initializer())

        # Create a layer database
        layer_db = LayerDatabase(model=sess,
                                 input_shape=(1, 28, 28, 1),
                                 working_dir=None)
        layer1 = layer_db.find_layer_by_name('conv2d/Conv2D')
        layer2 = layer_db.find_layer_by_name('conv2d_1/Conv2D')

        layer_db.mark_picked_layers([layer1, layer2])

        url, process = start_bokeh_server_session(8006)
        bokeh_session = BokehServerSession(url=url, session_id="compression")

        # Instantiate child
        greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo(
            layer_db=layer_db,
            pruner=pruner,
            cost_calculator=SpatialSvdCostCalculator(),
            eval_func=eval_func,
            eval_iterations=20,
            cost_metric=CostMetric.mac,
            target_comp_ratio=0.5,
            num_candidates=10,
            use_monotonic_fit=True,
            saved_eval_scores_dict=None,
            comp_ratio_rounding_algo=None,
            use_cuda=False,
            bokeh_session=bokeh_session)

        dict = greedy_algo._compute_eval_scores_for_all_comp_ratio_candidates()

        print()
        print(dict)
        self.assertEqual(90, dict['conv2d/Conv2D'][Decimal('0.1')])

        self.assertEqual(51, dict['conv2d_1/Conv2D'][Decimal('0.5')])
        self.assertEqual(21, dict['conv2d_1/Conv2D'][Decimal('0.8')])

        tf.compat.v1.reset_default_graph()
        sess.close()

        bokeh_session.server_session.close("test complete")
        os.killpg(os.getpgid(process.pid), signal.SIGTERM)
Esempio n. 6
0
    def test_prune_layer(self):
        """ Pruning single layer with 0.5 comp-ratio in MNIST"""

        # create tf.compat.v1.Session and initialize the weights and biases with zeros
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        # create session with graph
        sess = tf.compat.v1.Session(graph=tf.Graph(), config=config)

        with sess.graph.as_default():
            # by default, model will be constructed in default graph
            _ = mnist_tf_model.create_model(data_format='channels_last')
            sess.run(tf.compat.v1.global_variables_initializer())

        # Create a layer database
        orig_layer_db = LayerDatabase(model=sess,
                                      input_shape=(1, 28, 28, 1),
                                      working_dir=None)
        # Copy the db
        comp_layer_db = copy.deepcopy(orig_layer_db)
        conv1 = comp_layer_db.find_layer_by_name('conv2d/Conv2D')

        # before the splitting
        bias_op = get_succeeding_bias_op(conv1.module)
        for consumer in bias_op.outputs[0].consumers():
            self.assertEqual(consumer.name, "conv2d/Relu")

        spatial_svd_pruner = SpatialSvdPruner()
        spatial_svd_pruner._prune_layer(orig_layer_db, comp_layer_db, conv1,
                                        0.5, CostMetric.mac)
        conv2d_a_op = comp_layer_db.model.graph.get_operation_by_name(
            'conv2d_a/Conv2D')
        conv2d_b_op = comp_layer_db.model.graph.get_operation_by_name(
            'conv2d_b/Conv2D')
        conv2d_a_weight = WeightTensorUtils.get_tensor_as_numpy_data(
            comp_layer_db.model, conv2d_a_op)
        conv2d_b_weight = WeightTensorUtils.get_tensor_as_numpy_data(
            comp_layer_db.model, conv2d_b_op)

        conv1_a = comp_layer_db.find_layer_by_name('conv2d_a/Conv2D')
        conv1_b = comp_layer_db.find_layer_by_name('conv2d_b/Conv2D')

        # [Noc, Nic, kh, kw]
        self.assertEqual([2, 1, 5, 1], conv1_a.weight_shape)
        self.assertEqual([32, 2, 1, 5], conv1_b.weight_shape)

        # after the splitting
        bias_op = get_succeeding_bias_op(conv1_b.module)

        for consumer in bias_op.outputs[0].consumers():
            self.assertEqual(consumer.name, "conv2d/Relu")

        # original layer should be not there in the database
        self.assertRaises(
            KeyError,
            lambda: comp_layer_db.find_layer_by_name('conv2d/Conv2D'))

        # check if the layer replacement is done correctly
        orig_conv_op = comp_layer_db.model.graph.get_operation_by_name(
            'conv2d/Conv2D')
        bias_op = get_succeeding_bias_op(orig_conv_op)

        # consumers list should be empty
        consumers = [consumer for consumer in bias_op.outputs[0].consumers()]
        self.assertEqual(len(consumers), 0)

        # Check that weights loaded during svd pruning will stick after save and load
        new_sess = save_and_load_graph('./temp_meta/', comp_layer_db.model)
        conv2d_a_op = comp_layer_db.model.graph.get_operation_by_name(
            'conv2d_a/Conv2D')
        conv2d_b_op = comp_layer_db.model.graph.get_operation_by_name(
            'conv2d_b/Conv2D')
        conv2d_a_weight_after_save_load = WeightTensorUtils.get_tensor_as_numpy_data(
            comp_layer_db.model, conv2d_a_op)
        conv2d_b_weight_after_save_load = WeightTensorUtils.get_tensor_as_numpy_data(
            comp_layer_db.model, conv2d_b_op)
        self.assertTrue(
            np.array_equal(conv2d_a_weight, conv2d_a_weight_after_save_load))
        self.assertTrue(
            np.array_equal(conv2d_b_weight, conv2d_b_weight_after_save_load))

        tf.compat.v1.reset_default_graph()
        sess.close()
        new_sess.close()
        # delete temp directory
        shutil.rmtree(str('./temp_meta/'))
Esempio n. 7
0
    def create_spatial_svd_algo(cls,
                                sess: tf.compat.v1.Session,
                                working_dir: str,
                                eval_callback: EvalFunction,
                                eval_iterations,
                                input_shape: Union[Tuple, List[Tuple]],
                                cost_metric: CostMetric,
                                params: SpatialSvdParameters,
                                bokeh_session=None) -> CompressionAlgo:
        """
        Factory method to construct SpatialSvdCompressionAlgo

        :param sess: Model, represented by a tf.compat.v1.Session, to compress
        :param working_dir: path to store temp meta and checkpoint files
        :param eval_callback: Evaluation callback for the model
        :param eval_iterations: Evaluation iterations
        :param input_shape: tuple or list of tuples of input shape to the model
        :param cost_metric: Cost metric (mac or memory)
        :param params: Spatial SVD compression parameters
        :param bokeh_session: The Bokeh Session to display plots
        :return: An instance of SpatialSvdCompressionAlgo
        """

        # pylint: disable=too-many-arguments
        # pylint: disable=too-many-locals
        # Rationale: Factory functions unfortunately need to deal with a lot of parameters

        # Create a layer database
        layer_db = LayerDatabase(sess,
                                 input_shape,
                                 working_dir,
                                 starting_ops=params.input_op_names,
                                 ending_ops=params.output_op_names)
        use_cuda = False

        # Create a pruner
        pruner = SpatialSvdPruner()
        cost_calculator = SpatialSvdCostCalculator()
        comp_ratio_rounding_algo = RankRounder(params.multiplicity,
                                               cost_calculator)

        # Create a comp-ratio selection algorithm
        if params.mode == SpatialSvdParameters.Mode.auto:
            greedy_params = params.mode_params.greedy_params
            comp_ratio_select_algo = GreedyCompRatioSelectAlgo(
                layer_db,
                pruner,
                cost_calculator,
                eval_callback,
                eval_iterations,
                cost_metric,
                greedy_params.target_comp_ratio,
                greedy_params.num_comp_ratio_candidates,
                greedy_params.use_monotonic_fit,
                greedy_params.saved_eval_scores_dict,
                comp_ratio_rounding_algo,
                use_cuda,
                bokeh_session=bokeh_session)
            layer_selector = ConvNoDepthwiseLayerSelector()
            modules_to_ignore = params.mode_params.modules_to_ignore

        else:
            # Convert (module,comp-ratio) pairs to (layer,comp-ratio) pairs
            layer_comp_ratio_pairs = cls._get_layer_pairs(
                layer_db, params.mode_params.list_of_module_comp_ratio_pairs)

            comp_ratio_select_algo = ManualCompRatioSelectAlgo(
                layer_db,
                layer_comp_ratio_pairs,
                comp_ratio_rounding_algo,
                cost_metric=cost_metric)

            layer_selector = ManualLayerSelector(layer_comp_ratio_pairs)
            modules_to_ignore = []

        # Create the overall Spatial SVD compression algorithm
        spatial_svd_algo = CompressionAlgo(layer_db, comp_ratio_select_algo,
                                           pruner, eval_callback,
                                           layer_selector, modules_to_ignore,
                                           cost_calculator, use_cuda)

        return spatial_svd_algo