def test_get_log_events(self):
        log_group_name = 'example-group'
        log_stream_name = 'example-log-stream'

        hook = AwsLogsHook(aws_conn_id='aws_default', region_name="us-east-1")

        # First we create some log events
        conn = hook.get_conn()
        conn.create_log_group(logGroupName=log_group_name)
        conn.create_log_stream(logGroupName=log_group_name,
                               logStreamName=log_stream_name)

        input_events = [{'timestamp': 1, 'message': 'Test Message 1'}]

        conn.put_log_events(logGroupName=log_group_name,
                            logStreamName=log_stream_name,
                            logEvents=input_events)

        events = hook.get_log_events(log_group=log_group_name,
                                     log_stream_name=log_stream_name)

        # Iterate through entire generator
        events = list(events)
        count = len(events)

        assert count == 1
        assert events[0]['timestamp'] == input_events[0]['timestamp']
        assert events[0]['message'] == input_events[0]['message']
Esempio n. 2
0
 def __init__(self,
              function_name,
              awslogs_group,
              qualifier="$LATEST",
              payload={},
              aws_conn_id=None,
              region_name=None,
              *args,
              **kwargs):
     super(LambdaOperator, self).__init__(**kwargs)
     self.function_name = function_name
     self.qualifier = qualifier
     self.payload = payload
     # log stream is created and added to payload
     self.awslogs_group = awslogs_group
     self.awslogs_stream = "{0}/[{1}]{2}".format(
         datetime.utcnow().strftime("%Y/%m/%d"),
         self.qualifier,
         re.sub("-", "", str(uuid.uuid4())),
     )
     # lambda client and cloudwatch logs hook
     self.client = AwsHook(
         aws_conn_id=aws_conn_id).get_client_type("lambda")
     self.awslogs_hook = AwsLogsHook(aws_conn_id=aws_conn_id,
                                     region_name=region_name)
 def __init__(self, *args, **kwargs):
     super().__init__(*args, **kwargs)
     self.s3_hook = S3Hook(aws_conn_id=self.aws_conn_id)
     self.logs_hook = AwsLogsHook(aws_conn_id=self.aws_conn_id)
class SageMakerHook(AwsHook):
    """
    Interact with Amazon SageMaker.
    """
    non_terminal_states = {'InProgress', 'Stopping'}
    endpoint_non_terminal_states = {
        'Creating', 'Updating', 'SystemUpdating', 'RollingBack', 'Deleting'
    }
    failed_states = {'Failed'}

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.s3_hook = S3Hook(aws_conn_id=self.aws_conn_id)
        self.logs_hook = AwsLogsHook(aws_conn_id=self.aws_conn_id)

    def tar_and_s3_upload(self, path, key, bucket):
        """
        Tar the local file or directory and upload to s3

        :param path: local file or directory
        :type path: str
        :param key: s3 key
        :type key: str
        :param bucket: s3 bucket
        :type bucket: str
        :return: None
        """
        with tempfile.TemporaryFile() as temp_file:
            if os.path.isdir(path):
                files = [os.path.join(path, name) for name in os.listdir(path)]
            else:
                files = [path]
            with tarfile.open(mode='w:gz', fileobj=temp_file) as tar_file:
                for f in files:
                    tar_file.add(f, arcname=os.path.basename(f))
            temp_file.seek(0)
            self.s3_hook.load_file_obj(temp_file, key, bucket, replace=True)

    def configure_s3_resources(self, config):
        """
        Extract the S3 operations from the configuration and execute them.

        :param config: config of SageMaker operation
        :type config: dict
        :rtype: dict
        """
        s3_operations = config.pop('S3Operations', None)

        if s3_operations is not None:
            create_bucket_ops = s3_operations.get('S3CreateBucket', [])
            upload_ops = s3_operations.get('S3Upload', [])
            for op in create_bucket_ops:
                self.s3_hook.create_bucket(bucket_name=op['Bucket'])
            for op in upload_ops:
                if op['Tar']:
                    self.tar_and_s3_upload(op['Path'], op['Key'], op['Bucket'])
                else:
                    self.s3_hook.load_file(op['Path'], op['Key'], op['Bucket'])

    def check_s3_url(self, s3url):
        """
        Check if an S3 URL exists

        :param s3url: S3 url
        :type s3url: str
        :rtype: bool
        """
        bucket, key = S3Hook.parse_s3_url(s3url)
        if not self.s3_hook.check_for_bucket(bucket_name=bucket):
            raise AirflowException(
                "The input S3 Bucket {} does not exist ".format(bucket))
        if key and not self.s3_hook.check_for_key(key=key, bucket_name=bucket)\
           and not self.s3_hook.check_for_prefix(
                prefix=key, bucket_name=bucket, delimiter='/'):
            # check if s3 key exists in the case user provides a single file
            # or if s3 prefix exists in the case user provides multiple files in
            # a prefix
            raise AirflowException(
                "The input S3 Key "
                "or Prefix {} does not exist in the Bucket {}".format(
                    s3url, bucket))
        return True

    def check_training_config(self, training_config):
        """
        Check if a training configuration is valid

        :param training_config: training_config
        :type training_config: dict
        :return: None
        """
        for channel in training_config['InputDataConfig']:
            self.check_s3_url(channel['DataSource']['S3DataSource']['S3Uri'])

    def check_tuning_config(self, tuning_config):
        """
        Check if a tuning configuration is valid

        :param tuning_config: tuning_config
        :type tuning_config: dict
        :return: None
        """
        for channel in tuning_config['TrainingJobDefinition'][
                'InputDataConfig']:
            self.check_s3_url(channel['DataSource']['S3DataSource']['S3Uri'])

    def get_conn(self):
        """
        Establish an AWS connection for SageMaker

        :rtype: :py:class:`SageMaker.Client`
        """
        return self.get_client_type('sagemaker')

    def get_log_conn(self):
        """
        This method is deprecated.
        Please use :py:meth:`airflow.contrib.hooks.AwsLogsHook.get_conn` instead.
        """
        warnings.warn(
            "Method `get_log_conn` has been deprecated. "
            "Please use `airflow.contrib.hooks.AwsLogsHook.get_conn` instead.",
            category=DeprecationWarning,
            stacklevel=2)

        return self.logs_hook.get_conn()

    def log_stream(self, log_group, stream_name, start_time=0, skip=0):
        """
        This method is deprecated.
        Please use :py:meth:`airflow.contrib.hooks.AwsLogsHook.get_log_events` instead.
        """
        warnings.warn(
            "Method `log_stream` has been deprecated. "
            "Please use `airflow.contrib.hooks.AwsLogsHook.get_log_events` instead.",
            category=DeprecationWarning,
            stacklevel=2)

        return self.logs_hook.get_log_events(log_group, stream_name,
                                             start_time, skip)

    def multi_stream_iter(self, log_group, streams, positions=None):
        """
        Iterate over the available events coming from a set of log streams in a single log group
        interleaving the events from each stream so they're yielded in timestamp order.

        :param log_group: The name of the log group.
        :type log_group: str
        :param streams: A list of the log stream names. The position of the stream in this list is
            the stream number.
        :type streams: list
        :param positions: A list of pairs of (timestamp, skip) which represents the last record
            read from each stream.
        :type positions: list
        :return: A tuple of (stream number, cloudwatch log event).
        """
        positions = positions or {
            s: Position(timestamp=0, skip=0)
            for s in streams
        }
        event_iters = [
            self.logs_hook.get_log_events(log_group, s, positions[s].timestamp,
                                          positions[s].skip) for s in streams
        ]
        events = []
        for s in event_iters:
            if not s:
                events.append(None)
                continue
            try:
                events.append(next(s))
            except StopIteration:
                events.append(None)

        while any(events):
            i = argmin(events, lambda x: x['timestamp'] if x else 9999999999)
            yield (i, events[i])
            try:
                events[i] = next(event_iters[i])
            except StopIteration:
                events[i] = None

    def create_training_job(self,
                            config,
                            wait_for_completion=True,
                            print_log=True,
                            check_interval=30,
                            max_ingestion_time=None):
        """
        Create a training job

        :param config: the config for training
        :type config: dict
        :param wait_for_completion: if the program should keep running until job finishes
        :type wait_for_completion: bool
        :param check_interval: the time interval in seconds which the operator
            will check the status of any SageMaker job
        :type check_interval: int
        :param max_ingestion_time: the maximum ingestion time in seconds. Any
            SageMaker jobs that run longer than this will fail. Setting this to
            None implies no timeout for any SageMaker job.
        :type max_ingestion_time: int
        :return: A response to training job creation
        """

        self.check_training_config(config)

        response = self.get_conn().create_training_job(**config)
        if print_log:
            self.check_training_status_with_log(config['TrainingJobName'],
                                                self.non_terminal_states,
                                                self.failed_states,
                                                wait_for_completion,
                                                check_interval,
                                                max_ingestion_time)
        elif wait_for_completion:
            describe_response = self.check_status(config['TrainingJobName'],
                                                  'TrainingJobStatus',
                                                  self.describe_training_job,
                                                  check_interval,
                                                  max_ingestion_time)

            billable_time = \
                (describe_response['TrainingEndTime'] - describe_response['TrainingStartTime']) * \
                describe_response['ResourceConfig']['InstanceCount']
            self.log.info('Billable seconds:{}'.format(
                int(billable_time.total_seconds()) + 1))

        return response

    def create_tuning_job(self,
                          config,
                          wait_for_completion=True,
                          check_interval=30,
                          max_ingestion_time=None):
        """
        Create a tuning job

        :param config: the config for tuning
        :type config: dict
        :param wait_for_completion: if the program should keep running until job finishes
        :type wait_for_completion: bool
        :param check_interval: the time interval in seconds which the operator
            will check the status of any SageMaker job
        :type check_interval: int
        :param max_ingestion_time: the maximum ingestion time in seconds. Any
            SageMaker jobs that run longer than this will fail. Setting this to
            None implies no timeout for any SageMaker job.
        :type max_ingestion_time: int
        :return: A response to tuning job creation
        """

        self.check_tuning_config(config)

        response = self.get_conn().create_hyper_parameter_tuning_job(**config)
        if wait_for_completion:
            self.check_status(config['HyperParameterTuningJobName'],
                              'HyperParameterTuningJobStatus',
                              self.describe_tuning_job, check_interval,
                              max_ingestion_time)
        return response

    def create_transform_job(self,
                             config,
                             wait_for_completion=True,
                             check_interval=30,
                             max_ingestion_time=None):
        """
        Create a transform job

        :param config: the config for transform job
        :type config: dict
        :param wait_for_completion: if the program should keep running until job finishes
        :type wait_for_completion: bool
        :param check_interval: the time interval in seconds which the operator
            will check the status of any SageMaker job
        :type check_interval: int
        :param max_ingestion_time: the maximum ingestion time in seconds. Any
            SageMaker jobs that run longer than this will fail. Setting this to
            None implies no timeout for any SageMaker job.
        :type max_ingestion_time: int
        :return: A response to transform job creation
        """

        self.check_s3_url(
            config['TransformInput']['DataSource']['S3DataSource']['S3Uri'])

        response = self.get_conn().create_transform_job(**config)
        if wait_for_completion:
            self.check_status(config['TransformJobName'], 'TransformJobStatus',
                              self.describe_transform_job, check_interval,
                              max_ingestion_time)
        return response

    def create_model(self, config):
        """
        Create a model job

        :param config: the config for model
        :type config: dict
        :return: A response to model creation
        """

        return self.get_conn().create_model(**config)

    def create_endpoint_config(self, config):
        """
        Create an endpoint config

        :param config: the config for endpoint-config
        :type config: dict
        :return: A response to endpoint config creation
        """

        return self.get_conn().create_endpoint_config(**config)

    def create_endpoint(self,
                        config,
                        wait_for_completion=True,
                        check_interval=30,
                        max_ingestion_time=None):
        """
        Create an endpoint

        :param config: the config for endpoint
        :type config: dict
        :param wait_for_completion: if the program should keep running until job finishes
        :type wait_for_completion: bool
        :param check_interval: the time interval in seconds which the operator
            will check the status of any SageMaker job
        :type check_interval: int
        :param max_ingestion_time: the maximum ingestion time in seconds. Any
            SageMaker jobs that run longer than this will fail. Setting this to
            None implies no timeout for any SageMaker job.
        :type max_ingestion_time: int
        :return: A response to endpoint creation
        """

        response = self.get_conn().create_endpoint(**config)
        if wait_for_completion:
            self.check_status(
                config['EndpointName'],
                'EndpointStatus',
                self.describe_endpoint,
                check_interval,
                max_ingestion_time,
                non_terminal_states=self.endpoint_non_terminal_states)
        return response

    def update_endpoint(self,
                        config,
                        wait_for_completion=True,
                        check_interval=30,
                        max_ingestion_time=None):
        """
        Update an endpoint

        :param config: the config for endpoint
        :type config: dict
        :param wait_for_completion: if the program should keep running until job finishes
        :type wait_for_completion: bool
        :param check_interval: the time interval in seconds which the operator
            will check the status of any SageMaker job
        :type check_interval: int
        :param max_ingestion_time: the maximum ingestion time in seconds. Any
            SageMaker jobs that run longer than this will fail. Setting this to
            None implies no timeout for any SageMaker job.
        :type max_ingestion_time: int
        :return: A response to endpoint update
        """

        response = self.get_conn().update_endpoint(**config)
        if wait_for_completion:
            self.check_status(
                config['EndpointName'],
                'EndpointStatus',
                self.describe_endpoint,
                check_interval,
                max_ingestion_time,
                non_terminal_states=self.endpoint_non_terminal_states)
        return response

    def describe_training_job(self, name):
        """
        Return the training job info associated with the name

        :param name: the name of the training job
        :type name: str
        :return: A dict contains all the training job info
        """

        return self.get_conn().describe_training_job(TrainingJobName=name)

    def describe_training_job_with_log(self, job_name, positions, stream_names,
                                       instance_count, state, last_description,
                                       last_describe_job_call):
        """
        Return the training job info associated with job_name and print CloudWatch logs
        """
        log_group = '/aws/sagemaker/TrainingJobs'

        if len(stream_names) < instance_count:
            # Log streams are created whenever a container starts writing to stdout/err, so this list
            # may be dynamic until we have a stream for every instance.
            logs_conn = self.logs_hook.get_conn()
            try:
                streams = logs_conn.describe_log_streams(
                    logGroupName=log_group,
                    logStreamNamePrefix=job_name + '/',
                    orderBy='LogStreamName',
                    limit=instance_count)
                stream_names = [
                    s['logStreamName'] for s in streams['logStreams']
                ]
                positions.update([(s, Position(timestamp=0, skip=0))
                                  for s in stream_names if s not in positions])
            except logs_conn.exceptions.ResourceNotFoundException:
                # On the very first training job run on an account, there's no log group until
                # the container starts logging, so ignore any errors thrown about that
                pass

        if len(stream_names) > 0:
            for idx, event in self.multi_stream_iter(log_group, stream_names,
                                                     positions):
                self.log.info(event['message'])
                ts, count = positions[stream_names[idx]]
                if event['timestamp'] == ts:
                    positions[stream_names[idx]] = Position(timestamp=ts,
                                                            skip=count + 1)
                else:
                    positions[stream_names[idx]] = Position(
                        timestamp=event['timestamp'], skip=1)

        if state == LogState.COMPLETE:
            return state, last_description, last_describe_job_call

        if state == LogState.JOB_COMPLETE:
            state = LogState.COMPLETE
        elif time.time() - last_describe_job_call >= 30:
            description = self.describe_training_job(job_name)
            last_describe_job_call = time.time()

            if secondary_training_status_changed(description,
                                                 last_description):
                self.log.info(
                    secondary_training_status_message(description,
                                                      last_description))
                last_description = description

            status = description['TrainingJobStatus']

            if status not in self.non_terminal_states:
                state = LogState.JOB_COMPLETE
        return state, last_description, last_describe_job_call

    def describe_tuning_job(self, name):
        """
        Return the tuning job info associated with the name

        :param name: the name of the tuning job
        :type name: str
        :return: A dict contains all the tuning job info
        """

        return self.get_conn().describe_hyper_parameter_tuning_job(
            HyperParameterTuningJobName=name)

    def describe_model(self, name):
        """
        Return the SageMaker model info associated with the name

        :param name: the name of the SageMaker model
        :type name: str
        :return: A dict contains all the model info
        """

        return self.get_conn().describe_model(ModelName=name)

    def describe_transform_job(self, name):
        """
        Return the transform job info associated with the name

        :param name: the name of the transform job
        :type name: str
        :return: A dict contains all the transform job info
        """

        return self.get_conn().describe_transform_job(TransformJobName=name)

    def describe_endpoint_config(self, name):
        """
        Return the endpoint config info associated with the name

        :param name: the name of the endpoint config
        :type name: str
        :return: A dict contains all the endpoint config info
        """

        return self.get_conn().describe_endpoint_config(
            EndpointConfigName=name)

    def describe_endpoint(self, name):
        """
        :param name: the name of the endpoint
        :type name: str
        :return: A dict contains all the endpoint info
        """

        return self.get_conn().describe_endpoint(EndpointName=name)

    def check_status(self,
                     job_name,
                     key,
                     describe_function,
                     check_interval,
                     max_ingestion_time,
                     non_terminal_states=None):
        """
        Check status of a SageMaker job

        :param job_name: name of the job to check status
        :type job_name: str
        :param key: the key of the response dict
            that points to the state
        :type key: str
        :param describe_function: the function used to retrieve the status
        :type describe_function: python callable
        :param args: the arguments for the function
        :param check_interval: the time interval in seconds which the operator
            will check the status of any SageMaker job
        :type check_interval: int
        :param max_ingestion_time: the maximum ingestion time in seconds. Any
            SageMaker jobs that run longer than this will fail. Setting this to
            None implies no timeout for any SageMaker job.
        :type max_ingestion_time: int
        :param non_terminal_states: the set of nonterminal states
        :type non_terminal_states: set
        :return: response of describe call after job is done
        """
        if not non_terminal_states:
            non_terminal_states = self.non_terminal_states

        sec = 0
        running = True

        while running:
            time.sleep(check_interval)
            sec = sec + check_interval

            try:
                response = describe_function(job_name)
                status = response[key]
                self.log.info('Job still running for %s seconds... '
                              'current status is %s' % (sec, status))
            except KeyError:
                raise AirflowException(
                    'Could not get status of the SageMaker job')
            except ClientError:
                raise AirflowException(
                    'AWS request failed, check logs for more info')

            if status in non_terminal_states:
                running = True
            elif status in self.failed_states:
                raise AirflowException('SageMaker job failed because %s' %
                                       response['FailureReason'])
            else:
                running = False

            if max_ingestion_time and sec > max_ingestion_time:
                # ensure that the job gets killed if the max ingestion time is exceeded
                raise AirflowException(
                    'SageMaker job took more than %s seconds',
                    max_ingestion_time)

        self.log.info('SageMaker Job Compeleted')
        response = describe_function(job_name)
        return response

    def check_training_status_with_log(self, job_name, non_terminal_states,
                                       failed_states, wait_for_completion,
                                       check_interval, max_ingestion_time):
        """
        Display the logs for a given training job, optionally tailing them until the
        job is complete.

        :param job_name: name of the training job to check status and display logs for
        :type job_name: str
        :param non_terminal_states: the set of non_terminal states
        :type non_terminal_states: set
        :param failed_states: the set of failed states
        :type failed_states: set
        :param wait_for_completion: Whether to keep looking for new log entries
            until the job completes
        :type wait_for_completion: bool
        :param check_interval: The interval in seconds between polling for new log entries and job completion
        :type check_interval: int
        :param max_ingestion_time: the maximum ingestion time in seconds. Any
            SageMaker jobs that run longer than this will fail. Setting this to
            None implies no timeout for any SageMaker job.
        :type max_ingestion_time: int
        :return: None
        """

        sec = 0
        description = self.describe_training_job(job_name)
        self.log.info(secondary_training_status_message(description, None))
        instance_count = description['ResourceConfig']['InstanceCount']
        status = description['TrainingJobStatus']

        stream_names = []  # The list of log streams
        positions = {
        }  # The current position in each stream, map of stream name -> position

        job_already_completed = status not in non_terminal_states

        state = LogState.TAILING if wait_for_completion and not job_already_completed else LogState.COMPLETE

        # The loop below implements a state machine that alternates between checking the job status and
        # reading whatever is available in the logs at this point. Note, that if we were called with
        # wait_for_completion == False, we never check the job status.
        #
        # If wait_for_completion == TRUE and job is not completed, the initial state is TAILING
        # If wait_for_completion == FALSE, the initial state is COMPLETE
        # (doesn't matter if the job really is complete).
        #
        # The state table:
        #
        # STATE               ACTIONS                        CONDITION             NEW STATE
        # ----------------    ----------------               -----------------     ----------------
        # TAILING             Read logs, Pause, Get status   Job complete          JOB_COMPLETE
        #                                                    Else                  TAILING
        # JOB_COMPLETE        Read logs, Pause               Any                   COMPLETE
        # COMPLETE            Read logs, Exit                                      N/A
        #
        # Notes:
        # - The JOB_COMPLETE state forces us to do an extra pause and read any items that
        # got to Cloudwatch after the job was marked complete.
        last_describe_job_call = time.time()
        last_description = description

        while True:
            time.sleep(check_interval)
            sec = sec + check_interval

            state, last_description, last_describe_job_call = \
                self.describe_training_job_with_log(job_name, positions, stream_names,
                                                    instance_count, state, last_description,
                                                    last_describe_job_call)
            if state == LogState.COMPLETE:
                break

            if max_ingestion_time and sec > max_ingestion_time:
                # ensure that the job gets killed if the max ingestion time is exceeded
                raise AirflowException(
                    'SageMaker job took more than %s seconds',
                    max_ingestion_time)

        if wait_for_completion:
            status = last_description['TrainingJobStatus']
            if status in failed_states:
                reason = last_description.get('FailureReason',
                                              '(No reason provided)')
                raise AirflowException(
                    'Error training {}: {} Reason: {}'.format(
                        job_name, status, reason))
            billable_time = (last_description['TrainingEndTime'] - last_description['TrainingStartTime']) \
                * instance_count
            self.log.info('Billable seconds:{}'.format(
                int(billable_time.total_seconds()) + 1))
Esempio n. 5
0
 def get_logs_hook(self):
     return AwsLogsHook(aws_conn_id=self.aws_conn_id,
                        region_name=self.awslogs_region)
 def test_get_conn_returns_a_boto3_connection(self):
     hook = AwsLogsHook(aws_conn_id='aws_default', region_name="us-east-1")
     self.assertIsNotNone(hook.get_conn())
Esempio n. 7
0
class LambdaOperator(BaseOperator):
    @apply_defaults
    def __init__(self,
                 function_name,
                 awslogs_group,
                 qualifier="$LATEST",
                 payload={},
                 aws_conn_id=None,
                 region_name=None,
                 *args,
                 **kwargs):
        super(LambdaOperator, self).__init__(**kwargs)
        self.function_name = function_name
        self.qualifier = qualifier
        self.payload = payload
        # log stream is created and added to payload
        self.awslogs_group = awslogs_group
        self.awslogs_stream = "{0}/[{1}]{2}".format(
            datetime.utcnow().strftime("%Y/%m/%d"),
            self.qualifier,
            re.sub("-", "", str(uuid.uuid4())),
        )
        # lambda client and cloudwatch logs hook
        self.client = AwsHook(
            aws_conn_id=aws_conn_id).get_client_type("lambda")
        self.awslogs_hook = AwsLogsHook(aws_conn_id=aws_conn_id,
                                        region_name=region_name)

    def execute(self, context):
        self.log.info("Log group {0}, Log stream {1}".format(
            self.awslogs_group, self.awslogs_stream))
        self.log.info(
            "Invoking Lambda Function - Function name: {0}, Qualifier {1}".
            format(self.function_name, self.qualifier))
        self.log.info("Payload - {0}".format(self.payload))
        # invoke - wait - check
        payload = json.dumps({
            **{
                "group_name": self.awslogs_group,
                "stream_name": self.awslogs_stream
            },
            **self.payload,
        })
        invoke_opts = {
            "FunctionName": self.function_name,
            "Qualifier": self.qualifier,
            "InvocationType": "RequestResponse",
            "Payload": bytes(payload, encoding="utf8"),
        }
        try:
            resp = self.client.invoke(**invoke_opts)
            self.log.info("Lambda function invoked - StatusCode {0}".format(
                resp["StatusCode"]))
        except exceptions.ClientError as e:
            raise AirflowException(e.response["Error"])

        self._wait_for_function_ended()

        self._check_success_invocation()
        self.log.info("Lambda Function has been successfully invoked")

    def _wait_for_function_ended(self):
        waiter = self.client.get_waiter("function_active")
        waiter.config.max_attempts = math.ceil(self._get_function_timeout() /
                                               5)  # poll interval - 5 seconds
        waiter.wait(FunctionName=self.function_name, Qualifier=self.qualifier)

    def _check_success_invocation(self):
        self.log.info("Lambda Function logs output")
        has_message = False
        invocation_failed = False
        messages = []
        max_trial = 5
        current_trial = 0
        # sometimes events are not retrieved, run for 5 times if so
        while True:
            current_trial += 1
            for event in self.awslogs_hook.get_log_events(
                    self.awslogs_group, self.awslogs_stream):
                dt = datetime.fromtimestamp(event["timestamp"] / 1000.0)
                self.log.info("[{}] {}".format(dt.isoformat(),
                                               event["message"]))
                messages.append(event["message"])
            if len(messages) > 0 or current_trial > max_trial:
                break
            time.sleep(2)
        if len(messages) == 0:
            raise AirflowException("Fails to get log events")
        for m in reversed(messages):
            if re.search("ERROR", m) != None:
                raise AirflowException(
                    "Lambda Function invocation is not successful")

    def _get_function_timeout(self):
        resp = self.client.get_function(FunctionName=self.function_name,
                                        Qualifier=self.qualifier)
        return resp["Configuration"]["Timeout"]