Esempio n. 1
0
def lstmcell(inputs, hx, cx, w_ih, w_hh, b_ih, b_hh, use_bias=True):
    """
    Computes the hidden and state variables of a Long Short Term Memory (lstm) cell.

    Args:
        input:  akg.tvm.Tensor of type float16, float32 with shape [batch, input_size].
        hx:     akg.tvm.Tensor for hidden variable from previous cell with shape [batch, hidden_size].
        cx:     akg.tvm.Tensor for state variable from previous cell with shape [batch, hidden_size].
        w_ih:   akg.tvm.Tensor for input weights with shape [4*hidden_size, input_size].
        w_hh:   akg.tvm.Tensor for hidden weights with shape [4*hidden_size, hidden_size].
        b_ih:   akg.tvm.Tensor for input bias with shape [4*hidden_size].
        b_hh:   akg.tvm.Tensor for hidden bias with shape [4*hidden_size].

    Returns:
        hy:     akg.tvm.Tensor for hidden variable of current cell. 
        cy:     akg.tvm.Tensor for state variable of current cell.
    """
    w_i_ih, w_f_ih, w_c_ih, w_o_ih = split(w_ih, 4, 0)
    b_i_ih, b_f_ih, b_c_ih, b_o_ih = split(b_ih, 4)
    w_i_hh, w_f_hh, w_c_hh, w_o_hh = split(w_hh, 4, 0)
    b_i_hh, b_f_hh, b_c_hh, b_o_hh = split(b_hh, 4)

    # gates:[batch, 4*hidden_size] ih*wh+bias
    # ingate, forgetgate, cellgate, outgate = split(gates, 4, 1)
    i = dense(inputs, w_i_ih, b_i_ih, use_bias) + dense(hx, w_i_hh, b_i_hh, use_bias)
    f = dense(inputs, w_f_ih, b_f_ih, use_bias) + dense(hx, w_f_hh, b_f_hh, use_bias)
    c = dense(inputs, w_c_ih, b_c_ih, use_bias) + dense(hx, w_c_hh, b_c_hh, use_bias)
    o = dense(inputs, w_o_ih, b_o_ih, use_bias) + dense(hx, w_o_hh, b_o_hh, use_bias)

    cy = (sigmoid(f) * cx) + (sigmoid(i) * tanh(c))
    hy = sigmoid(o) * tanh(cy)

    return hy, cy
Esempio n. 2
0
def tanh_ad(head, in_data):
    """
    Compute gradient of tanh operator using automatic differentiate.

    Args:
        head (tvm.tensor.Tensor): Tensor of type float16, float32.
        in_data (tvm.tensor.Tensor): Tensor of type float16, float32.

    Returns:
        tvm.tensor.Tensor has the same shape as input.
    """
    in_dtype = in_data.dtype

    # On cloud environment, cast data type from 'float16' to 'float32',
    # then cast result back to 'float16', could achieve higher precision.
    if in_dtype == 'float16' and not utils.product_is_mini():
        in_data = akg.topi.cast(in_data, "float32")
        head = akg.topi.cast(head, "float32")

    out_data = tanh.tanh(in_data)
    jacs = list(akg.differentiate(out_data, [in_data], head))
    jacs_res = jacs[0]
    if in_dtype == 'float16' and not utils.product_is_mini():
        jacs_res = akg.topi.cast(jacs_res, 'float16')
    return jacs_res
Esempio n. 3
0
def gelu_ad_custom(head, in_data):
    """
    Automatic differentiation of gelu with customize function.

    In order to achieve higher precision, we could also self-define tanh part differentiate with simplify calculation.
    """
    dtype = in_data.dtype
    const1 = akg.tvm.const(0.044715, dtype)
    const2 = akg.tvm.const(0.7978845, dtype)
    const3 = akg.tvm.const(0.1070322, dtype)
    tmp0 = akg.topi.multiply(in_data, in_data)
    pow0 = akg.topi.multiply(tmp0, in_data)
    mul0 = pow0 * const1
    add0 = in_data + mul0
    mul1 = add0 * const2
    tanh_res = tanh.tanh(mul1)
    add1 = tanh_res + akg.tvm.const(1, dtype)
    mul2 = add1 * akg.tvm.const(0.5, dtype)
    mul3 = in_data * mul2
    res = mul3

    def gelu_diff(out, inp, head, ad_attrs, new_array_pld):
        temp = tanh_fdiff(head, mul1)
        return [
            temp * (akg.tvm.const(0.7978845, dtype) + const3 * inp[0] * inp[0])
        ]

    jacs = list(
        akg.differentiate(res, [in_data],
                          head,
                          None,
                          None,
                          override={tanh_res: ([in_data], gelu_diff)}))
    return jacs[0]
Esempio n. 4
0
def rnn_tanh_cell_grad(input, hidden, w_ih, w_hh, b_ih, b_hh, grad):
    """
    Computes dgrad w.r.t. dinput (di), dhidden_input (dhid), dweights (dWih, dWhh), dbias (db).

    Args:
        input:  akg.tvm.Tensor of type float16, float32 with shape [batch, input_size].
        hidden: akg.tvm.Tensor for hidden variable from previous cell with shape [batch, hidden_size].
        w_ih:   akg.tvm.Tensor for input weights with shape [hidden_size, input_size].
        w_hh:   akg.tvm.Tensor for hidden weights with shape [hidden_size, hidden_size].
        b_ih:   akg.tvm.Tensor for input bias with shape [hidden_size].
        b_hh:   akg.tvm.Tensor for hidden bias with shape [hidden_size].
        grad:   akg.tvm.Tensor representing dy with shape [batch, hidden_size].

    Returns:
        di:     akg.tvm.Tensor for dy/di.
        dhid:   akg.tvm.Tensor for dy/dhid.
        dWih:   akg.tvm.Tensor for dy/dWih (input weights).
        dWhh:   akg.tvm.Tensor for dy/dWhh (hidden weights).
        db:     akg.tvm.Tensor for dy/db.
    """
    batch, input_size = get_shape(input)
    _, hidden_size = get_shape(hidden)
    igates = akg.topi.nn.dense(input, w_ih, b_ih)
    hgates = akg.topi.nn.dense(hidden, w_hh, b_hh)
    h = tanh(igates + hgates)

    dh = (1 - h * h) * grad
    kk = akg.tvm.reduce_axis((0, batch))
    dWih = akg.tvm.compute(
        (hidden_size, input_size),
        lambda i, j: akg.tvm.sum(input[kk, j] * dh(kk, i), axis=kk),
        name="dWih")
    kk2 = akg.tvm.reduce_axis((0, batch))
    dWhh = akg.tvm.compute(
        (hidden_size, hidden_size),
        lambda i, j: akg.tvm.sum(hidden[kk2, j] * dh(kk2, i), axis=kk2),
        name="dWhh")
    kk3 = akg.tvm.reduce_axis((0, hidden_size))
    di = akg.tvm.compute(
        (batch, input_size),
        lambda i, j: akg.tvm.sum(w_ih[kk3, j] * dh[i, kk3], axis=kk3),
        name="di")
    kk4 = akg.tvm.reduce_axis((0, hidden_size))
    dhid = akg.tvm.compute(
        (batch, hidden_size),
        lambda i, j: akg.tvm.sum(w_hh[kk4, j] * dh[i, kk4], axis=kk4),
        name="dhid")
    db = akg.topi.sum(dh, 0)
    return di, dhid, dWih, dWhh, db
Esempio n. 5
0
def rnn_tanh_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh, use_bias=True):
    """
    RNN cell with tanh non-linearity.

    Args:
        inputs:  akg.tvm.Tensor of type float16, float32.
        hidden:  akg.tvm.Tensor for hidden variable from previous cell.
        w_ih:   akg.tvm.Tensor for input weights.
        w_hh:   akg.tvm.Tensor for hidden weights.
        b_ih:   akg.tvm.Tensor for input bias.
        b_hh:   akg.tvm.Tensor for hidden bias.

    Returns:
        h:      akg.tvm.Tensor for hidden output variable of current cell.
    """ 
    igates = dense(inputs, w_ih, b_ih, use_bias)
    hgates = dense(hidden, w_hh, b_hh, use_bias)
    h = tanh(igates + hgates)
    return h
Esempio n. 6
0
File: gelu.py Progetto: zhuyawen/akg
def gelu(data):
    """
    gelu activation function.

    ..math:`0.5*data(1+tanh(sqrt(2/pi)(data+0.044715data^3)))`

    Args:
        x (tvm.tensor.Tensor): tensor with type float16 or float32.

    ..math:`0.5*x(1+tanh(sqrt(2/pi)(x+0.044715x^3)))
        data (tvm.tensor.Tensor): tensor with type float16 or float32.

    Returns:
        tvm.tensor.Tensor.
    """
    dtype = data.dtype
    vc_util.ops_dtype_check(dtype, vc_util.DtypeForDavinci.ALL_FLOAT)

    if dtype == "float32" and utils.product_is_mini():
        data = akg.tvm.compute(data.shape,
                               lambda *indice: data(*indice).astype("float16"),
                               name='type_cast')
        dtype = "float16"
    tmp0 = akg.topi.multiply(data, data)
    pow0 = akg.topi.multiply(tmp0, data)
    mul0 = pow0 * akg.tvm.const(0.044715, dtype)
    add0 = data + mul0
    mul1 = add0 * akg.tvm.const(0.7978845, dtype)
    tanh_res = tanh(mul1)
    add1 = tanh_res + akg.tvm.const(1, dtype)
    mul2 = add1 * akg.tvm.const(0.5, dtype)
    mul3 = data * mul2
    res = mul3

    if dtype == "float32" and utils.product_is_mini():
        res = akg.tvm.compute(res.shape,
                              lambda *indice: res(*indice).astype("float16"),
                              name='res')
    return res
Esempio n. 7
0
def lstmcell_grad_h(input, hx, cx, w_ih, w_hh, b_ih, b_hh, dh, dc):
    """
    Computes dh w.r.t. dw, db, dcx, dhx, dx.

    Args:
        input: akg.tvm.Tensor of type float16, float32.
        hx:    akg.tvm.Tensor for hidden variable from previous cell.
        cx:    akg.tvm.Tensor for state variable from previous cell.
        w_ih:  akg.tvm.Tensor for input weights.
        w_hh:  akg.tvm.Tensor for hidden weights.
        b_ih:  akg.tvm.Tensor for input bias. 
        b_hh:  akg.tvm.Tensor for hidden bias.

    Returns:
        dw_ih:    akg.tvm.Tensor for dh/dw_ih.
        dw_hh:    akg.tvm.Tensor for dh/dw_hh.
        db_ih:    akg.tvm.Tensor for dh/db_ih.
        db_hh:    akg.tvm.Tensor for dh/db_hh.
        dcx:      akg.tvm.Tensor for dh/dcx.
        dhx:      akg.tvm.Tensor for dh/dhx.
        dx:       akg.tvm.Tensor for dh/dx.
    """
    # things from fwd
    batch, input_size = get_shape(input)
    _, hidden_size = get_shape(hx)
    xh = akg.topi.concatenate((hx, input), 1)
    whl = [w_ih, w_hh]
    W = concat(whl, 1)  # [4*hidden_size, input_size+hidden_size]

    gates = dense(input, w_ih, b_ih, True) + dense(hx, w_hh, b_hh, True)

    ingate_in, forgetgate_in, cellgate_in, outgate_in = split(gates, 4, 1)

    ingate = sigmoid(ingate_in)
    forgetgate = sigmoid(forgetgate_in)
    cellgate = tanh(cellgate_in)
    outgate = sigmoid(outgate_in)
    cy = (forgetgate * cx) + (ingate * cellgate)
    tanh_cy = tanh(cy)
    #hy = outgate * tanh_cy

    # starts bwd
    # head * dh/do shape [n,]
    doutgate = dh * tanh_cy
    doutgate_in = outgate * (1 - outgate) * doutgate
    kk = akg.tvm.reduce_axis((0, batch))
    dWo = akg.tvm.compute(
        (hidden_size, hidden_size + input_size),
        lambda i, j: akg.tvm.sum(xh[kk, j] * doutgate_in(kk, i), axis=kk),
        name="dWo")

    dtanh_cy = dh * outgate
    dc = (1 - tanh_cy * tanh_cy) * dtanh_cy

    dingate = cellgate * dc
    dingate_in = ingate * (1 - ingate) * dingate
    kk3 = akg.tvm.reduce_axis((0, batch))
    dWi = akg.tvm.compute(
        (hidden_size, hidden_size + input_size),
        lambda i, j: akg.tvm.sum(xh[kk3, j] * dingate_in(kk3, i), axis=kk3),
        name="dWi")

    dforgetgate = dc * cx
    dforgetgate_in = forgetgate * (1 - forgetgate) * dforgetgate
    kk2 = akg.tvm.reduce_axis((0, batch))
    dWf = akg.tvm.compute((hidden_size, hidden_size + input_size),
                          lambda i, j: akg.tvm.sum(
                              xh[kk2, j] * dforgetgate_in(kk2, i), axis=kk2),
                          name="dWf")

    dcellgate = ingate * dc
    dcellgate_in = (1 - cellgate * cellgate) * dcellgate
    kk4 = akg.tvm.reduce_axis((0, batch))
    dWc = akg.tvm.compute(
        (hidden_size, hidden_size + input_size),
        lambda i, j: akg.tvm.sum(xh[kk4, j] * dcellgate_in(kk4, i), axis=kk4),
        name="dWc")

    dW = akg.topi.concatenate((dWi, dWf, dWc, dWo))

    db = akg.topi.concatenate(
        (dingate_in, dforgetgate_in, dcellgate_in, doutgate_in), 1)

    kk5 = akg.tvm.reduce_axis((0, 4 * hidden_size))
    dxh = akg.tvm.compute(
        (batch, hidden_size + input_size),
        lambda i, j: akg.tvm.sum(W[kk5, j] * db[i, kk5], axis=kk5),
        name="dxh")
    dhx = akg.tvm.compute((batch, hidden_size),
                          lambda i, j: dxh[i, j],
                          name="dhx")
    dx = akg.tvm.compute((batch, input_size),
                         lambda i, j: dxh[i, j + hidden_size],
                         name="dx")

    dcx = forgetgate * dc

    dw_ih = akg.tvm.compute(w_ih.shape, lambda i, j: dW[i, j])
    #dw_hh = akg.tvm.compute(w_hh.shape, lambda i, j: dW[i, j + input_size])

    bhr = akg.tvm.reduce_axis((0, batch))

    db_ih = akg.tvm.compute((4 * hidden_size, ),
                            lambda i: akg.tvm.sum(db[i, bhr], axis=bhr),
                            name="dbih")

    bir = akg.tvm.reduce_axis((0, batch))

    db_hh = akg.tvm.compute((4 * hidden_size, ),
                            lambda i: akg.tvm.sum(db[i, bir], axis=bir),
                            name="dbhh")

    return dw_ih, w_hh, db_ih, db_hh, dcx, dhx, dx
Esempio n. 8
0
def lstmcell_grad_c(input, hx, cx, w_ih, w_hh, b_ih, b_hh, dc):
    """
    Computes dc w.r.t. dw, db, dcx, dhx, dx.

    Args:
        input: akg.tvm.Tensor of type float16, float32.
        hx:    akg.tvm.Tensor for hidden variable from previous cell.
        cx:    akg.tvm.Tensor for state variable from previous cell.
        w_ih:  akg.tvm.Tensor for input weights.
        w_hh:  akg.tvm.Tensor for hidden weights.
        b_ih:  akg.tvm.Tensor for input bias. 
        b_hh:  akg.tvm.Tensor for hidden bias.

    Returns:
        dw_ih:    akg.tvm.Tensor for dc/dw_ih.
        dw_hh:    akg.tvm.Tensor for dc/dw_hh.
        db_ih:    akg.tvm.Tensor for dc/db_ih.
        db_hh:    akg.tvm.Tensor for dc/db_hh.
        dcx:      akg.tvm.Tensor for dc/dcx.
        dhx:      akg.tvm.Tensor for dc/dhx.
        dx:       akg.tvm.Tensor for dc/dx.
    """
    # things from fwd
    whl = [w_ih, w_hh]
    W = concat(whl, 1)  # [4*hidden_size, input_size+hidden_size]
    b = b_ih + b_hh

    batch, input_size = get_shape(input)
    _, hidden_size = get_shape(hx)
    xh = akg.topi.concatenate((hx, input), 1)
    t = akg.topi.nn.dense(xh, W, b)
    temp_i = akg.tvm.compute((batch, hidden_size),
                             lambda i, j: t(i, j),
                             name="temp_i")
    i = sigmoid(temp_i)
    temp_f = akg.tvm.compute((batch, hidden_size),
                             lambda i, j: t(i, j + hidden_size),
                             name="temp_f")
    f = sigmoid(temp_f)
    temp_c_ = akg.tvm.compute((batch, hidden_size),
                              lambda i, j: t(i, j + 2 * hidden_size),
                              name="temp_c")
    c_ = tanh(temp_c_)

    # starts bwd
    # head * dh/do shape [n,]
    dtemp_o = akg.tvm.compute((batch, hidden_size), lambda *i: 0)
    dWo = akg.tvm.compute((hidden_size, hidden_size + input_size),
                          lambda i, j: 0,
                          name="dWo")

    df = dc * cx
    dtemp_f = f * (1 - f) * df
    kk2 = akg.tvm.reduce_axis((0, batch))
    dWf = akg.tvm.compute(
        (hidden_size, hidden_size + input_size),
        lambda i, j: akg.tvm.sum(xh[kk2, j] * dtemp_f(kk2, i), axis=kk2),
        name="dWf")

    di = c_ * dc
    dtemp_i = i * (1 - i) * di
    kk3 = akg.tvm.reduce_axis((0, batch))
    dWi = akg.tvm.compute(
        (hidden_size, hidden_size + input_size),
        lambda i, j: akg.tvm.sum(xh[kk3, j] * dtemp_i(kk3, i), axis=kk3),
        name="dWi")

    dc_ = i * dc
    dtemp_c_ = (1 - c_ * c_) * dc_
    kk4 = akg.tvm.reduce_axis((0, batch))
    dWc = akg.tvm.compute(
        (hidden_size, hidden_size + input_size),
        lambda i, j: akg.tvm.sum(xh[kk4, j] * dtemp_c_(kk4, i), axis=kk4),
        name="dWc")

    dW = akg.topi.concatenate((dWi, dWf, dWc, dWo))

    db = akg.topi.concatenate((dtemp_i, dtemp_f, dtemp_c_, dtemp_o), 1)

    kk5 = akg.tvm.reduce_axis((0, 4 * hidden_size))
    dxh = akg.tvm.compute(
        (batch, hidden_size + input_size),
        lambda i, j: akg.tvm.sum(W[kk5, j] * db[i, kk5], axis=kk5),
        name="dxh")
    dhx = akg.tvm.compute((batch, hidden_size),
                          lambda i, j: dxh[i, j],
                          name="dhx")
    dx = akg.tvm.compute((batch, input_size),
                         lambda i, j: dxh[i, j + hidden_size],
                         name="dx")

    dcx = f * dc

    dw_ih = akg.tvm.compute(w_ih.shape, lambda i, j: dW[i, j])
    #dw_hh = akg.tvm.compute(w_hh.shape, lambda i, j: dW[i, j + input_size])

    bhr = akg.tvm.reduce_axis((0, batch))

    db_ih = akg.tvm.compute((4 * hidden_size, ),
                            lambda i: akg.tvm.sum(db[i, bhr], axis=bhr),
                            name="dbih")

    bir = akg.tvm.reduce_axis((0, batch))

    db_hh = akg.tvm.compute((4 * hidden_size, ),
                            lambda i: akg.tvm.sum(db[i, bir], axis=bir),
                            name="dbhh")

    return dw_ih, w_hh, db_ih, db_hh, dcx, dhx, dx