Esempio n. 1
0
def get_supplier_solutions():
    """Execute the equivalent of the following SPARQL query, querying the Turtle file supplier.ttl:
        SELECT
            ?suppkey, ?nationkey
        FROM
            supplier
        WHERE {
            ?supplier <tpch:suppkey> ?suppkey .
            ?supplier <tpch:nationkey> ?nationkey .
        }
    """
    timer = FunctionTimer()
    short_prints = True

    suppliers = rdf.import_graph("supplier.ttl")
    timer.lap("suppliers", short=short_prints)

    # Find all triples that define a 'suppkey' (as predicate).
    bgp_suppkey_matches = clans.superstrict(suppliers, clans.from_dict({"p": rdflib.URIRef("tpch:suppkey")}))
    # Give the subject a name for later joining and object the name we need in the output.
    bgp_suppkey = clans.compose(bgp_suppkey_matches, clans.from_dict({"supplier": "s", "suppkey": "o"}))

    # Find all triples that define a 'nationkey' (as predicate) and give the subject a name for
    # later joining and object the name we need in the output.
    bgp_nationkey = clans.compose(
        clans.superstrict(suppliers, clans.from_dict({"p": rdflib.URIRef("tpch:nationkey")})),
        clans.from_dict({"supplier": "s", "nationkey": "o"}),
    )

    # Join the previous results on 'supplier' and project the columns we need.
    supplier_solutions = clans.project(clans.functional_cross_union(bgp_suppkey, bgp_nationkey), "nationkey", "suppkey")
    timer.end("supplier_solutions", short=short_prints)

    return supplier_solutions
Esempio n. 2
0
    def test_import_graph(self):
        """Test importing clans from files and strings (function import_graph())."""
        def check_graph(graph_mo, graph_ref):
            self.assertEqual(graph_mo.get_ground_set(), clans.get_absolute_ground_set())
            self.assertEqual(graph_mo.get_left_set(), Set('s', 'p', 'o'))
            self.assertEqual(graph_mo, graph_ref)

        for graph_id in bg.keys():
            graph_data = bg[graph_id]
            if 'file' in graph_data:
                graph = import_graph(graph_data['file']())
                check_graph(graph, graph_data['mo']())
            else:
                assert 'graph' in graph_data
                graph1 = import_graph(io.StringIO(graph_data['graph']()))
                check_graph(graph1, graph_data['mo']())
Esempio n. 3
0
    def test_import_graph(self):
        """Test importing clans from files and strings (function import_graph())."""
        def check_graph(graph_mo, graph_ref):
            self.assertEqual(graph_mo.get_ground_set(),
                             clans.get_absolute_ground_set())
            self.assertEqual(graph_mo.get_left_set(), Set('s', 'p', 'o'))
            self.assertEqual(graph_mo, graph_ref)

        for graph_id in bg.keys():
            graph_data = bg[graph_id]
            if 'file' in graph_data:
                graph = import_graph(graph_data['file']())
                check_graph(graph, graph_data['mo']())
            else:
                assert 'graph' in graph_data
                graph1 = import_graph(io.StringIO(graph_data['graph']()))
                check_graph(graph1, graph_data['mo']())
Esempio n. 4
0
    def test_triple_match(self):
        # Determine the number of types in the graph data
        graph_type_cnt = sample_graph.count('rdf:type')

        # Import the example graph as data algebra MathObject.
        graph = import_graph(io.StringIO(sample_graph), rdf_format='turtle')
        
        # Extract the triples that have a type and include their id
        triples_matched = triple_match(graph, '?id', URIRef('rdf:type'), '?type')

        # Verify that the number of sets matched equals the number of types in the graph
        self.assertEqual(len(triples_matched), graph_type_cnt)
Esempio n. 5
0
    def test_triple_match(self):
        # Determine the number of types in the graph data
        graph_type_cnt = sample_graph.count('rdf:type')

        # Import the example graph as data algebra MathObject.
        graph = import_graph(io.StringIO(sample_graph), rdf_format='turtle')

        # Extract the triples that have a type and include their id
        triples_matched = triple_match(graph, '?id', URIRef('rdf:type'),
                                       '?type')

        # Verify that the number of sets matched equals the number of types in the graph
        self.assertEqual(len(triples_matched), graph_type_cnt)
Esempio n. 6
0
def get_supplier_solutions():
    """Execute the equivalent of the following SPARQL query, querying the Turtle file supplier.ttl:
        SELECT
            ?suppkey, ?nationkey
        FROM
            supplier
        WHERE {
            ?supplier <tpch:suppkey> ?suppkey .
            ?supplier <tpch:nationkey> ?nationkey .
        }
    """
    timer = FunctionTimer()
    short_prints = True

    suppliers = rdf.import_graph('supplier.ttl')
    timer.lap('suppliers', short=short_prints)

    # Find all triples that define a 'suppkey' (as predicate).
    bgp_suppkey_matches = clans.superstrict(
        suppliers, clans.from_dict({'p': rdflib.URIRef('tpch:suppkey')}))
    # Give the subject a name for later joining and object the name we need in the output.
    bgp_suppkey = clans.compose(
        bgp_suppkey_matches, clans.from_dict({'supplier': 's', 'suppkey': 'o'}))

    # Find all triples that define a 'nationkey' (as predicate) and give the subject a name for
    # later joining and object the name we need in the output.
    bgp_nationkey = clans.compose(
        clans.superstrict(suppliers, clans.from_dict({'p': rdflib.URIRef('tpch:nationkey')})),
        clans.from_dict({'supplier': 's', 'nationkey': 'o'}))

    # Join the previous results on 'supplier' and project the columns we need.
    supplier_solutions = clans.project(
        clans.cross_functional_union(bgp_suppkey, bgp_nationkey), 'nationkey', 'suppkey')
    timer.end('supplier_solutions', short=short_prints)

    return supplier_solutions
Esempio n. 7
0
from examples.sampleRdfGraph import sample_graph


print_examples = True
show_results_as_webpage = True


# Print the input graph.
if print_examples:
    print('Input graph:', sample_graph)


# Data Algebra -------------------------------------------------------------------------------------

# Import the example graph as data algebra MathObject.
graph_algebra = import_graph(io.StringIO(sample_graph), rdf_format='turtle')

if print_examples:
    print('Input graph (as MathObject):', graph_algebra)

# Query the MathObject graph, retrieving the id, name and favorite MathObject of all engineers who
# have all three.
start = time()
engineers_algebra = join(
    triple_match(graph_algebra, '?eng', rdflib.URIRef('rdf:name'), '?name'),
    triple_match(graph_algebra, '?eng', rdflib.URIRef('rdf:type'), rdflib.URIRef('cat:engineer')),
    triple_match(graph_algebra, '?eng', rdflib.URIRef('fav:mathobject'), '?fav')
)
elapsed_algebra = time() - start

engineers_algebra_json = io.StringIO()
Esempio n. 8
0
from examples.sampleRdfGraph import sample_graph


print_examples = True
show_results_as_webpage = True


# Print the input graph.
if print_examples:
    print('Input graph:', sample_graph)


# Data Algebra -------------------------------------------------------------------------------------

# Import the example graph as data algebra MathObject.
graph_algebra = import_graph(input_data=sample_graph, rdf_format='turtle')

if print_examples:
    print('Input graph (as MathObject):', graph_algebra)

# Query the MathObject graph, retrieving the id, name and favorite MathObject of all engineers who
# have all three.
start = time()
engineers_algebra = join(
    triple_match(graph_algebra, '?eng', rdflib.URIRef('rdf:name'), '?name'),
    triple_match(graph_algebra, '?eng', rdflib.URIRef('rdf:type'), rdflib.URIRef('cat:engineer')),
    triple_match(graph_algebra, '?eng', rdflib.URIRef('fav:mathobject'), '?fav')
)
elapsed_algebra = time() - start

engineers_algebra_json = io.StringIO()
import io
import rdflib

import algebraixlib.algebras.clans as clans
from algebraixlib.io.rdf import import_graph
from algebraixlib.util.html import DataAlgebraHtmlDescriptor as HtmlDesc, math_object_as_html
from algebraixlib.util.miscellaneous import open_webpage_from_html_str
from algebraixlib.util.rdf import match_and_project

from examples.sampleRdfGraph import sample_graph

print_examples = True
show_results_as_webpage = True

# Import and print the input graph.
graph_algebra = import_graph(io.StringIO(sample_graph), rdf_format='turtle')
if print_examples:
    print('Input graph:', sample_graph)
    print('Input graph (as MathObject):', graph_algebra)

# Query the imported graph using general pattern matching APIs.
names = match_and_project(graph_algebra, {'p': rdflib.URIRef('rdf:name')}, {
    's': '?eng',
    'o': '?name'
})
engineers = match_and_project(graph_algebra, {
    'p': rdflib.URIRef('rdf:type'),
    'o': rdflib.URIRef('cat:engineer')
}, {'s': '?eng'})
engs_and_names = clans.cross_functional_union(names, engineers)