def menuShow(screen, bg): sg1 = Sign(290, 260) sg2 = Sign(690, 260) pos = (0, 0) tr = 1 but1 = 0 but2 = 0 while tr: screen.blit(bg, (0, 0)) sg1.show(screen) sg2.show(screen) font = pygame.font.SysFont("comicsansms", 40) text = font.render("Step by step", True, (100, 100, 255)) screen.blit(text, (290 + (300 - text.get_width()) // 2, 260 + (200 - text.get_height()) // 2)) text = font.render("User case", True, (100, 100, 255)) screen.blit(text, (690 + (300 - text.get_width()) // 2, 260 + (200 - text.get_height()) // 2)) for event in pygame.event.get(): if event.type == pygame.MOUSEMOTION: pos = event.pos elif event.type == pygame.MOUSEBUTTONDOWN: pos = event.pos if sg1.click(pos) or sg2.click(pos): but1 = sg1.click(pos) but2 = sg2.click(pos) tr = 0 sg1.update(pos) sg2.update(pos) pygame.display.update() #time.sleep(0.005) if but2: m, n = inpt(screen, bg) algo.main(n, m, screen) elif but1: algo.main(2, 2, screen)
def UploadAction(event=None): filez = filedialog.askopenfilenames(parent=r,title='Choose a file') files_data = r.tk.splitlist(filez) result = main(files_data) import operator sorted_d = dict(sorted(result.items(), key=operator.itemgetter(1),reverse=True)) top_10 = list(sorted_d.keys())[0:10] re_insert = dict() list_value = list() predict_values = list() for i in top_10: list_value.append(i) predict_values.append(float(sorted_d[i])) re_insert['Algorithms'] = list_value re_insert['Accuracy'] = predict_values print(re_insert) df1 = DataFrame(re_insert,columns=['Algorithms','Accuracy']) figure1 = plt.Figure(figsize=(30,15), dpi=100) ax1 = figure1.add_subplot(111) ax1.set_title('Best algorithms for your model') bar1 = FigureCanvasTkAgg(figure1, r) bar1.get_tk_widget().pack(side=tk.LEFT, fill=tk.BOTH) df1 = df1[['Algorithms','Accuracy']].groupby('Algorithms').sum() df1.plot(kind='bar', legend=True, ax=ax1)
def post(self): urlLinks = self.request.get("urllink") tag = self.request.get("tag") img = urlLinks displaygray = self.request.get("grayz") #if db.GqlQuery('SELECT * FROM CC WHERE tag = tag'): # dictionary = exists[0].colorcode # totalpx = exists[0].totalpx # dominant = exists[0].dominant dictionary, totalpx, dominant, displaygray = main(img, displaygray) data_input = CC(tag=tag, colorcode=str(dictionary), dominant=str(dominant), totalpx=totalpx, confidence=50.0) data_input.put() q = db.GqlQuery('SELECT * FROM CC ORDER BY tag') queryDict = {} counter = 0 for n in q: queryDict[counter] = ast.literal_eval(n.colorcode) counter += 1 self.render("front.html", dictionary=dictionary, totalpx=totalpx, tag=tag, q=q, queryDict=queryDict, displaygray=displaygray)
def main(): ex = algo.main() # Need to go step by step, python is exploding for inFile, all_res in ex.items(): with open("analytics_" + inFile + ".csv", 'w') as csvfile: writer = csv.DictWriter( csvfile, fieldnames=[ "Algorithme", "Nombre de camions utilisés", "Nombre d'accès aux camions", "Nombre de remplissage des camions", "Moyenne de remplissage d'un camion", "% de camions remplis à 1-10%", "% de camions remplis à 11-20%", "% de camions remplis à 21-30%", "% de camions remplis à 31-40%", "% de camions remplis à 41-50%", "% de camions remplis à 51-60%", "% de camions remplis à 61-70%", "% de camions remplis à 71-80%", "% de camions remplis à 81-90%", "% de camions remplis à 91-100%" ]) writer.writeheader() for res in all_res: row = {} row["Algorithme"] = res[0] bins = res[1] row["Nombre de camions utilisés"] = len(bins) row["Nombre d'accès aux camions"] = bins.bin_access row["Nombre de remplissage des camions"] = bins.bin_change row["Moyenne de remplissage d'un camion"] = round( 100 * sum(bins) / (len(bins) * bins.bin_size)) for i in range(0, 100, 10): m_min = i + 1 m_max = i + 10 row["% de camions remplis à {0}-{1}%".format( m_min, m_max)] = round( 100 * len( list( filter( lambda bin: m_min <= 100 * bin / bins. bin_size <= m_max, bins))) / len(bins), 2) writer.writerow(row)
def get(self): img = "images/sample3.png" default_tag = "COLOR OF THE DAY" displaygray = "false" dictionary, totalpx, dominant, displaygray = main(img, displaygray) q = db.GqlQuery('SELECT * FROM CC ORDER BY tag') counter = 0 queryDict = {} for n in q: queryDict[counter] = ast.literal_eval(n.colorcode) counter += 1 self.render("front.html", dictionary=dictionary, totalpx=totalpx, q=q, tag=default_tag, queryDict=queryDict)
pagenos, maxpages=maxpages, password=password, caching=caching, check_extractable=True): page.rotate = (page.rotate + rotation) % 360 interpreter.process_page(page) fp.close() device.close() outfp.close() return if __name__ == '__main__': #x=int(input("Enter the number of pdf files to be converted :")) #for i in range(x): # pdf=raw_input("\nPlease enter the name of the pdf files : \n") # main(pdf,i+1) # algo.main('pdf'+str(i+1)) x = sys.argv[1:] for i in range(len(x)): main(x[i], i + 1) results = algo.main('pdf' + str(i + 1)) # Results is a List of Lists #TODO Convert Results into a CSV for Analysis in Excel with open('excel' + str(i + 1) + '.csv', 'wb') as myfile: wr = csv.writer(myfile, quoting=csv.QUOTE_ALL) wr.writerows(results)
limit=datetime.datetime(1, 1, 1, 0, 0, 1) original=0 final=0 saved_distance=0 end=False counter=0 while(end==False): print("processing " + str(counter+1) + "th pool") counter=counter+1 end,limit,trip_details_dictionary=dataprovider.get_trip_details(limit) limit=limit+datetime.timedelta(0,3) pool1=trip_details_dictionary[1] pool2=trip_details_dictionary[2] pool3=trip_details_dictionary[3] pool4=trip_details_dictionary[4] initial,total,saved,total_distance_after_merging=algo.main(pool1,pool2,pool3,pool4,2) original=original+initial final=final+total saved_distance=saved_distance+saved print(saved_distance) print(original-final) average_original=original/counter average_final=final/counter average_saved=saved_distance/counter total_saved_trips=original-final print("Total number of trips without ride sharing" + str(original)) print("Total number of trips with ride sharing" + str(final)) print("Average number of trips merged per pool" + str(int((original-final)/counter))) print("Total number of trips saved: " + str(total_saved_trips)) print("Average number of trips saved: " + str(int(total_saved_trips/counter)))
def resolution(): idDataSet = str(request.json) result = main(idDataSet) return str(result)
def debug_algo(): algo.main() return jsonify({"success": True})
def order_root(): if request.method == "POST": # expected data [priority, time_to_completion, facility_id, equipment_id] data = request.get_json() # sanitization if not data: return jsonify({"success": False, "message": "Missing body."}), 400 if not 'priority' in data or not 'time_to_completion' in data or not 'facility_id' in data or not 'equipment_id' in data: return jsonify({ "success": False, "message": "Missing body fields." }), 400 if not isinstance(data['priority'], int) or not isinstance( data['time_to_completion'], int) or not isinstance( data['facility_id'], int) or not isinstance( data['equipment_id'], int): return jsonify({ "success": False, "message": "Invalid body fields." }), 400 if data['priority'] < 1 or data['priority'] > 5: return jsonify({ "success": False, "message": "Priority out of range." }), 400 if data['time_to_completion'] < 1: return jsonify({ "success": False, "message": "Time to completion out of range." }), 400 if not Equipment.query.get(data['equipment_id']): return jsonify({ "success": False, "message": "Equipment key not found." }), 404 if not Facility.query.get(data['facility_id']): return jsonify({ "success": False, "message": "Facility key not found." }), 404 # add to db order = Order(data['priority'], data['time_to_completion'], data['facility_id'], data['equipment_id']) db.session.add(order) db.session.commit() # after each call algo.main() return jsonify(get_dict(order)) else: # get orders orders = Order.query.order_by(Order.created_at.desc()).all() return jsonify(get_dict_array(orders))
def equipment_type_root(): if request.method == "POST": # expected data [name, prob, hour_min, hour_max] data = request.get_json() # sanitization if not data: return jsonify({"success": False, "message": "Missing body."}), 400 if not 'name' in data or not 'prob' in data or not 'hour_min' in data or not 'hour_max' in data: return jsonify({ "success": False, "message": "Missing body fields." }), 400 if not isinstance(data['name'], str) or not isinstance( data['prob'], (int, float)) or not isinstance( data['hour_min'], int) or not isinstance( data['hour_max'], int): return jsonify({ "success": False, "message": "Invalid body fields." }), 400 if len(data['name'].strip()) < 1 or len(data['name']) > 25: return jsonify({ "success": False, "message": "Name length out of range." }), 400 if data['prob'] < 0 or data['prob'] > 1: return jsonify({ "success": False, "message": "Probability out of range." }), 400 if data['hour_min'] < 1: return jsonify({ "success": False, "message": "Minimum hour out of range." }), 400 if data['hour_max'] < 1 or data['hour_max'] < data['hour_min']: return jsonify({ "success": False, "message": "Maximum hour out of range." }), 400 # add to db e_type = EquipmentType(data['name'], data['prob'], data['hour_min'], data['hour_max']) db.session.add(e_type) db.session.commit() # main algorithm run algo.main() return jsonify(get_dict(e_type)) else: # get equipments equipment_types = EquipmentType.query.all() return jsonify(get_dict_array(equipment_types))