Esempio n. 1
0
def test(rank, args, shared_model, counter):
    torch.manual_seed(args.seed + rank)

    env = create_atari_env(args.env_name)
    env.seed(args.seed + rank)

    model = ActorCritic(env.observation_space.shape[0], env.action_space)

    model.eval()

    state = env.reset()
    state = torch.from_numpy(state)
    reward_sum = 0
    done = True

    start_time = time.time()

    # a quick hack to prevent the agent from stucking
    actions = deque(maxlen=100)
    episode_length = 0
    while True:
        episode_length += 1
        # Sync with the shared model
        if done:
            model.load_state_dict(shared_model.state_dict())
            cx = torch.zeros(1, 256)
            hx = torch.zeros(1, 256)
        else:
            cx = cx.detach()
            hx = hx.detach()

        with torch.no_grad():
            value, logit, (hx, cx) = model((state.unsqueeze(0), (hx, cx)))
        prob = F.softmax(logit, dim=-1)
        action = prob.max(1, keepdim=True)[1].numpy()

        state, reward, done, _ = env.step(action[0, 0])
        done = done or episode_length >= args.max_episode_length
        reward_sum += reward

        # a quick hack to prevent the agent from stucking
        actions.append(action[0, 0])
        if actions.count(actions[0]) == actions.maxlen:
            done = True

        if done:
            print(
                "Time {}, num steps {}, FPS {:.0f}, episode reward {}, episode length {}"
                .format(
                    time.strftime("%Hh %Mm %Ss",
                                  time.gmtime(time.time() - start_time)),
                    counter.value, counter.value / (time.time() - start_time),
                    reward_sum, episode_length))
            reward_sum = 0
            episode_length = 0
            actions.clear()
            state = env.reset()
            time.sleep(60)

    state = torch.from_numpy(state)
Esempio n. 2
0
def train(rank, args, shared_model, counter, lock, optimizer=None):
    torch.manual_seed(args.seed + rank)

    env = envs.create_atari_env(args.env_name)
    env.seed(args.seed + rank)

    model = ptnmodel.ActorCritic(env.observation_space.shape[0],
                                 env.action_space)

    if optimizer is None:
        optimizer = optim.Adam(shared_model.parameters(), lr=args.lr)

    model.train()

    state = env.reset()
    state = torch.from_numpy(state)
    done = True

    episode_length = 0
    while True:
        # Sync with the shared model
        model.load_state_dict(shared_model.state_dict())
        if done:
            cx = torch.zeros(1, 256)
            hx = torch.zeros(1, 256)
        else:
            cx = cx.detach()
            hx = hx.detach()

        values = []
        log_probs = []
        rewards = []
        entropies = []

        for step in range(args.num_steps):
            episode_length += 1
            value, logit, (hx, cx) = model((state.unsqueeze(0), (hx, cx)))
            prob = F.softmax(logit, dim=-1)
            log_prob = F.log_softmax(logit, dim=-1)
            entropy = -(log_prob * prob).sum(1, keepdim=True)
            entropies.append(entropy)

            action = prob.multinomial(num_samples=1).detach()
            log_prob = log_prob.gather(1, action)

            state, reward, done, _ = env.step(action.numpy())
            done = done or episode_length >= args.max_episode_length
            reward = max(min(reward, 1), -1)

            with lock:
                counter.value += 1

            if done:
                episode_length = 0
                state = env.reset()

            state = torch.from_numpy(state)
            values.append(value)
            log_probs.append(log_prob)
            rewards.append(reward)

            if done:
                break

        R = torch.zeros(1, 1)
        if not done:
            value, _, _ = model((state.unsqueeze(0), (hx, cx)))
            R = value.detach()

        values.append(R)
        policy_loss = 0
        value_loss = 0
        gae = torch.zeros(1, 1)
        for i in reversed(range(len(rewards))):
            R = args.gamma * R + rewards[i]
            advantage = R - values[i]
            value_loss = value_loss + 0.5 * advantage.pow(2)

            # Generalized Advantage Estimation
            delta_t = rewards[i] + args.gamma * \
                values[i + 1] - values[i]
            gae = gae * args.gamma * args.gae_lambda + delta_t

            policy_loss = policy_loss - \
                log_probs[i] * gae.detach() - args.entropy_coef * entropies[i]

        optimizer.zero_grad()

        (policy_loss + args.value_loss_coef * value_loss).backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

        ensure_shared_grads(model, shared_model)
    optimizer.step()
Esempio n. 3
0
parser.add_argument(
    '--env-name',
    default='PongDeterministic-v4',
    help='environment to train on (default: PongDeterministic-v4)')
parser.add_argument('--no-shared',
                    default=False,
                    help='use an optimizer without shared momentum.')

if __name__ == '__main__':
    os.environ['OMP_NUM_THREADS'] = '1'
    os.environ['CUDA_VISIBLE_DEVICES'] = ""

    args = parser.parse_args()
    print(args)
    torch.manual_seed(args.seed)
    env = create_atari_env(args.env_name)
    shared_model = ActorCritic(env.observation_space.shape[0],
                               env.action_space)
    shared_model.share_memory()

    if args.no_shared:
        optimizer = None
    else:
        optimizer = SharedAdam(shared_model.parameters(), lr=args.lr)
        optimizer.share_memory()

    processes = []

    counter = mp.Value('i', 0)
    lock = mp.Lock()