def getCopy( self ): """return a new copy. """ new_entry = Prediction() new_entry.mExpand = self.mExpand new_entry.mPredictionId = self.mPredictionId new_entry.mQueryToken = self.mQueryToken new_entry.mQueryFrom = self.mQueryFrom new_entry.mQueryTo = self.mQueryTo new_entry.mSbjctToken = self.mSbjctToken new_entry.mSbjctStrand = self.mSbjctStrand new_entry.mSbjctFrom = self.mSbjctFrom new_entry.mSbjctTo = self.mSbjctTo new_entry.mRank = self.mRank new_entry.score = self.score new_entry.mQueryLength = self.mQueryLength new_entry.mQueryCoverage = self.mQueryCoverage new_entry.mNGaps = self.mNGaps new_entry.mNFrameShifts = self.mNFrameShifts new_entry.mNIntrons = self.mNIntrons new_entry.mNSplits = self.mNSplits new_entry.mNStopCodons = self.mNStopCodons new_entry.mPercentIdentity = self.mPercentIdentity new_entry.mPercentSimilarity = self.mPercentSimilarity new_entry.mTranslation = self.mTranslation new_entry.mSbjctGenomeFrom = self.mSbjctGenomeFrom new_entry.mSbjctGenomeTo = self.mSbjctGenomeTo new_entry.mAlignmentString = self.mAlignmentString new_entry.mQueryAli = self.mQueryAli new_entry.mSbjctAli = self.mSbjctAli if self.mExpand: new_entry.mMapPeptide2Translation = alignlib.makeAlignmentVector() alignlib.copyAlignment( new_entry.mMapPeptide2Translation, self.mMapPeptide2Translation) new_entry.mMapPeptide2Genome = Genomics.String2Alignment( new_entry.mAlignmentString) else: new_entry.mMapPeptide2Translation = self.mMapPeptide2Translation = None new_entry.mMapPeptide2Genome = self.mMapPeptide2Genome = None return new_entry
map_row2col.clear() alignlib.AlignmentFormatExplicit(link.mQueryFrom, link.mQueryAli, link.mSbjctFrom, link.mSbjctAli).copy( map_row2col ) ## test all combinations, the alignment might be a suboptimal alignment in case ## of repeats. for e1 in cds[link.mQueryToken]: for e2 in cds[link.mSbjctToken]: tmp_map_row2col.clear() if param_expand: alignlib.copyAlignment( tmp_map_row2col, map_row2col, e1.mPeptideFrom + 1, e1.mPeptideTo, e2.mPeptideFrom + 1, e2.mPeptideTo, ) else: alignlib.copyAlignment( tmp_map_row2col, map_row2col, e1.mPeptideFrom / 3 + 1, e1.mPeptideTo / 3 + 1, e2.mPeptideFrom / 3 + 1, e2.mPeptideTo / 3 + 1, ) ## in case of split codons, there is an alignment of length 1. Skip that. if tmp_map_row2col.getLength() > 1:
ref_genome_from -= ref_exons_offset ref_genome_to -= ref_exons_offset ## get percent identity for exon exon_percent_identity = 0 exon_percent_similarity = 0 if query_sequence and sbjct_sequence: tmp_ali = alignlib.makeAlignmentVector() xquery_from = exon_from / 3 xquery_to = exon_to / 3 alignlib.copyAlignment( tmp_ali, entry.mMapPeptide2Translation, xquery_from, xquery_to ) if tmp_ali.getLength() == 0: options.stdlog.write( "# WARNING: empty alignment %s\n" % str((ref_from, exon_from, ref_to, exon_to, xquery_from, xquery_to))) nempty_alignments += 1 else: if options.loglevel >= 5: options.stdlog.write( "# %s\n" % str( alignlib.AlignmentFormatExplicit( tmp_ali, query_sequence, sbjct_sequence ) ) ) exon_percent_identity = alignlib.calculatePercentIdentity( tmp_ali, query_sequence, sbjct_sequence ) * 100 exon_percent_similarity = alignlib.calculatePercentSimilarity( tmp_ali ) * 100 if exon_percent_identity >= min_pide: is_good_exon = 1
def main( argv = None ): """script main. parses command line options in sys.argv, unless *argv* is given. """ if argv == None: argv = sys.argv parser = E.OptionParser( version = "%prog version: $Id: gpipe/compare_predictions2exons.py 2011 2008-07-04 10:40:51Z andreas $", usage = globals()["__doc__"] ) parser.add_option( "-g", "--genome-file", dest="genome_file", type="string", help="filename with genome." ) parser.add_option( "-b", "--boundaries", dest="filename_boundaries", type="string", help="filename with exon boundaries." ) parser.add_option( "-e", "--exons", dest="filename_exons", type="string", help="filename with exons (output)." ) parser.add_option( "-p", "--peptides", dest="filename_peptides", type="string", help="filename with peptide sequences." ) parser.add_option( "-w", "--write-notfound", dest="write_notfound", action="store_true", help="print exons for predictions not found in reference." ) parser.add_option( "-q", "--quality-pide", dest="quality_threshold_pide", type="int", help="quality threshold (pide) for exons." ) parser.set_defaults( genome_file = "genome", filename_boundaries = None, filename_exons = None, filename_peptides = None, quality_threshold_pide = 0, write_notfound = False, ## allowed number of nucleotides for exon boundaries to ## be considered equivalent. slipping_exon_boundary = 9, ## stop codons to search for stop_codons = ("TAG", "TAA", "TGA"), ) (options, args) = E.Start( parser, add_pipe_options = True ) if len(args) > 0: print USAGE, "no arguments required." sys.exit(2) reference_exon_boundaries = {} if options.filename_boundaries: reference_exon_boundaries = Exons.ReadExonBoundaries( open( options.filename_boundaries, "r"), do_invert = 1, remove_utr = 1) E.info( "read exon boundaries for %i queries" % len(reference_exon_boundaries) ) if options.filename_exons: outfile_exons = open( options.filename_exons, "w") outfile_exons.write( "%s\n" % "\t".join( ( "prediction_id", "exon_id", "exon_from", "exon_to", "exon_frame", "reference_id", "reference_from", "reference_to", "reference_phase", "pidentity", "psimilarity", "nframeshifts", "ngaps", "nstopcodons", "is_ok", "genome_exon_from", "genome_exon_to") ) ) else: outfile_exons = None if options.filename_peptides: peptide_sequences = Genomics.ReadPeptideSequences( open(options.filename_peptides, "r") ) E.info("read peptide sequences for %i queries" % len(peptide_sequences) ) else: peptide_sequences = {} entry = PredictionParser.PredictionParserEntry() last_filename_genome = None nfound, nmissed_exons, nmissed_length = 0, 0, 0 nempty_alignments = 0 fasta = IndexedFasta.IndexedFasta( options.genome_file ) options.stdout.write( "%s\n" % "\t".join( ( "prediction_id", "number", "dubious_exons", "boundaries_sum", "boundaries_max", "identical_exons", "inserted_exons", "deleted_exons", "inserted_introns", "deleted_introns", "truncated_Nterminus", "truncated_Cterminus", "deleted_Nexons", "deleted_Cexons", "inserted_Nexons", "inserted_Cexons" ) ) ) for line in sys.stdin: if line[0] == "#": continue try: entry.Read(line) except ValueError, msg: print "# parsing failed with msg %s in line %s" % (msg, line[:-1]) sys.exit(1) exons = Genomics.Alignment2ExonBoundaries( entry.mMapPeptide2Genome, query_from = entry.mQueryFrom, sbjct_from = entry.mSbjctGenomeFrom, add_stop_codon = 0 ) if exons[-1][4] != entry.mSbjctGenomeTo: print "# WARNING: discrepancy in exon calculation!!!" for e in exons: print "#", str(e) print "#", str(entry) if options.loglevel >= 5: for e in exons: print "#", str(e) genomic_fragment = fasta.getSequence( entry.mSbjctToken, entry.mSbjctStrand, entry.mSbjctGenomeFrom, entry.mSbjctGenomeTo ) skip = False if peptide_sequences.has_key( entry.mQueryToken ): query_sequence = alignlib.makeSequence(peptide_sequences[entry.mQueryToken]) sbjct_sequence = alignlib.makeSequence(entry.mTranslation) percent_similarity, percent_identity = 0, 0 if query_sequence.getLength() < entry.mMapPeptide2Translation.getRowTo(): print "# WARNING: query sequence %s is too short: %i %i" % ( entry.mQueryToken, query_sequence.getLength(), entry.mMapPeptide2Translation.getRowTo()) sys.stdout.flush() nmissed_length += 1 skip = True elif sbjct_sequence.getLength() < entry.mMapPeptide2Translation.getColTo(): print "# WARNING: sbjct sequence %s is too short: %i %i" % ( entry.mSbjctToken, sbjct_sequence.getLength(), entry.mMapPeptide2Translation.getColTo()) sys.stdout.flush() nmissed_length += 1 skip = True else: alignlib.rescoreAlignment( entry.mMapPeptide2Translation, query_sequence, sbjct_sequence, alignlib.makeScorer( query_sequence, sbjct_sequence ) ) percent_identity = alignlib.calculatePercentIdentity( entry.mMapPeptide2Translation, query_sequence, sbjct_sequence ) * 100 percent_similarity = alignlib.calculatePercentSimilarity( entry.mMapPeptide2Translation ) * 100 E.debug( "prediction %s: percent identity/similarity: before=%5.2f/%5.2f, realigned=%5.2f/%5.2f" % ( str(entry.mPredictionId), entry.mPercentSimilarity, entry.mPercentIdentity, percent_similarity, percent_identity ) ) else: query_sequence = None sbjct_sequence = None # default values exons_num_exons = "na" exons_boundaries_sum = "na" exons_boundaries_max = "na" dubious_exons = "na" ndeleted_exons, ninserted_exons, ndeleted_introns, ninserted_introns, nidentical_exons = 0,0,0,0,0 truncated_Nterminal_exon, truncated_Cterminal_exon = 0,0 ndeleted_Nexons, ndeleted_Cexons = 0, 0 ninserted_Nexons, ninserted_Cexons = 0, 0 exons_offset = exons[0][3] if not reference_exon_boundaries.has_key( entry.mQueryToken ): print "# WARNING: sequence %s has no exon boundaries" % ( entry.mQueryToken ) sys.stdout.flush() nmissed_exons += 1 skip = True if not skip: nfound += 1 ref_exons = reference_exon_boundaries[entry.mQueryToken] ref_exons_offset = ref_exons[0].mGenomeFrom exons_num_exons = len(ref_exons) - len(exons) exons_boundaries_sum = 0 exons_phase = 0 exons_boundaries_max = 0 dubious_exons = 0 inserted_exons = 0 temp_inserted_exons = 0 if options.loglevel >= 3: for e in exons: options.stdlog.write( "# %s\n" % str(e) ) for e in ref_exons: options.stdlog.write( "# %s\n" % str(e) ) min_pide = entry.mPercentIdentity * options.quality_threshold_pide / 100 in_sync = 0 e,r = 0,0 while e < len(exons) and r < len(ref_exons): this_e, this_r = e+1, r+1 percent_identity = 0 percent_similarity = 0 is_good_exon = 0 if options.loglevel >= 4: options.stdlog.write( "# current exons: %i and %i\n" % (e, r) ) sys.stdout.flush() exon_from, exon_to, exon_phase, exon_genome_from, exon_genome_to, exon_ali = exons[e][0:6] ref_from, ref_to, ref_phase, ref_genome_from, ref_genome_to = (ref_exons[r].mPeptideFrom, ref_exons[r].mPeptideTo, ref_exons[r].frame, ref_exons[r].mGenomeFrom, ref_exons[r].mGenomeTo) ref_genome_from -= ref_exons_offset ref_genome_to -= ref_exons_offset ## get percent identity for exon exon_percent_identity = 0 exon_percent_similarity = 0 if query_sequence and sbjct_sequence: tmp_ali = alignlib.makeAlignmentVector() xquery_from = exon_from / 3 xquery_to = exon_to / 3 alignlib.copyAlignment( tmp_ali, entry.mMapPeptide2Translation, xquery_from, xquery_to ) if tmp_ali.getLength() == 0: options.stdlog.write( "# WARNING: empty alignment %s\n" % str((ref_from, exon_from, ref_to, exon_to, xquery_from, xquery_to))) nempty_alignments += 1 else: if options.loglevel >= 5: options.stdlog.write( "# %s\n" % str( alignlib.AlignmentFormatExplicit( tmp_ali, query_sequence, sbjct_sequence ) ) ) exon_percent_identity = alignlib.calculatePercentIdentity( tmp_ali, query_sequence, sbjct_sequence ) * 100 exon_percent_similarity = alignlib.calculatePercentSimilarity( tmp_ali ) * 100 if exon_percent_identity >= min_pide: is_good_exon = 1 else: is_good_exon = 0 if e < len(exons) -1 : (next_exon_from, next_exon_to, next_exon_phase, next_exon_genome_from, next_exon_genome_to, next_exon_ali) = exons[e+1][0:6] else: (next_exon_from, next_exon_to, next_exon_phase, next_exon_genome_from, next_exon_genome_to, next_exon_ali) = 0, 0, 0, 0, 0, [] if r < len(ref_exons) - 1: next_ref_from, next_ref_to, next_ref_phase = (ref_exons[r+1].mPeptideFrom, ref_exons[r+1].mPeptideTo, ref_exons[r+1].frame) else: next_ref_from, next_ref_to, next_ref_phase = 0, 0, 0 if options.loglevel >= 2: options.stdlog.write( "# %s\n" % "\t".join( map(str, (entry.mQueryToken, exon_from, exon_to, exon_phase, exon_genome_from, exon_genome_to, ref_from, ref_to, ref_phase )))) sys.stdout.flush() # beware of small exons. # if less than options.slipping_exon_boundary: boundary is 0 # check if end is more than options.splipping_exon_boundary apart as well. if exon_to - exon_from <= options.slipping_exon_boundary or \ ref_to - ref_from <= options.slipping_exon_boundary: boundary = 0 else: boundary = options.slipping_exon_boundary if ref_to <= exon_from + boundary and \ ref_to <= exon_to - options.slipping_exon_boundary: ## no overlap is_good_exon = 0 if e == 0: ndeleted_Nexons += 1 else: ndeleted_exons += 1 r += 1 exon_from, exon_to, exon_phase, exon_genome_from, exon_genome_to = 0, 0, 0, 0, 0 overlap = 0 elif exon_to <= ref_from + boundary and \ exon_to <= ref_to - options.slipping_exon_boundary: ## no overlap is_good_exon = 0 if r == 0: ninserted_Nexons += 1 else: ninserted_exons += 1 e += 1 ref_from, ref_to, ref_phase = 0, 0, 0 overlap = 0 else: ## overlap overlap = 1 dfrom = int(math.fabs(exon_from - ref_from)) dto = int(math.fabs(exon_to - ref_to)) ## get percent identity for overlapping fragment if query_sequence and sbjct_sequence: ## this the problem tmp_ali = alignlib.makeAlignmentVector() xquery_from = max( ref_from / 3, exon_from / 3) xquery_to = min(ref_to / 3, exon_to / 3) alignlib.copyAlignment( tmp_ali, entry.mMapPeptide2Translation, xquery_from, xquery_to ) if tmp_ali.getLength() == 0: options.stdlog.write( "# warning: empty alignment %s\n" % str((ref_from, exon_from, ref_to, exon_to, xquery_from, xquery_to ))) percent_identity = 0 percent_similarity = 0 else: if options.loglevel >= 5: print str( alignlib.AlignmentFormatExplicit( tmp_ali, query_sequence, sbjct_sequence ) ) percent_identity = alignlib.calculatePercentIdentity( tmp_ali, query_sequence, sbjct_sequence ) * 100 percent_similarity = alignlib.calculatePercentSimilarity( tmp_ali ) * 100 if percent_identity >= min_pide: is_good_exon = 1 else: is_good_exon = 0 dubious_exons += 1 ## adjust regions for terminal exons if e == 0 and r == 0 and dfrom <= (entry.mQueryFrom - 1) * 3 and dfrom > 0: if is_good_exon: truncated_Nterminal_exon = dfrom dfrom = 0 ## truncated terminal exons if e == len(exons)-1 and r == len(ref_exons)-1 and dto <= (entry.mQueryLength - entry.mQueryTo) * 3 and dto > 0: if is_good_exon: truncated_Cterminal_exon = dto dto = 0 ## do not count deviations for terminal query exons if e == 0 and dfrom <= entry.mQueryFrom * 3 and dfrom > 0: dfrom = 0 if e == len(exons)-1 and dto <= (entry.mQueryLength - entry.mQueryTo) * 3 and dto > 0: dto = 0 ## permit difference of one codon (assumed to be stop) if e == len(exons)-1 and r == len(ref_exons)-1 and dto == 3: dto = 0 ## deal with different boundary conditions: if dfrom == 0 and dto == 0: if is_good_exon: nidentical_exons += 1 e += 1 r += 1 ## next exon within this ref_exon elif exon_to < ref_to and next_exon_to and next_exon_to <= ref_to + options.slipping_exon_boundary: if is_good_exon: ninserted_introns += 1 e += 1 in_sync = 1 dto = 0 ## next ref_exon within this exon elif ref_to < exon_to and next_ref_to and next_ref_to <= exon_to + options.slipping_exon_boundary: if is_good_exon: ndeleted_introns += 1 r += 1 in_sync = 1 dto = 0 else: e += 1 r += 1 if in_sync: dfrom = 0 if is_good_exon: exons_boundaries_sum += dfrom + dto exons_boundaries_max = max( dfrom, exons_boundaries_max ) exons_boundaries_max = max( dto, exons_boundaries_max ) ########################################################### ## count inserted/deleted introns and misplaced boundaries ## ## if exon and next_exon in ref_exon: inserted intron ## if ref_exon and next_ref_exon in exon: deleted intron if outfile_exons: if genomic_fragment and exon_genome_to: nintrons, nframeshifts, ngaps, nsplits, nstopcodons, disruptions = Genomics.CountGeneFeatures( exon_genome_from - entry.mSbjctGenomeFrom, exon_ali, genomic_fragment, border_stop_codon = 0 ) else: nintrons, nframeshifts, ngaps, nsplits, nstopcodons = 0, 0, 0, 0, 0 if exon_to == 0: this_e = 0 if ref_to == 0: this_r = 0 outfile_exons.write( string.join( map(str, (entry.mPredictionId, this_e, exon_from, exon_to, exon_phase, this_r, ref_from, ref_to, ref_phase, percent_identity, percent_similarity, nframeshifts, ngaps, nstopcodons, is_good_exon, exon_genome_from, exon_genome_to, )), "\t") + "\n") while e < len(exons): exon_from, exon_to, exon_phase, exon_genome_from, exon_genome_to = exons[e][0:5] e += 1 ninserted_Cexons += 1 if outfile_exons: outfile_exons.write( string.join( map(str, (entry.mPredictionId, e, exon_from, exon_to, exon_phase, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, exon_genome_from, exon_genome_to, )), "\t") + "\n") while r < len(ref_exons): ref_from, ref_to, ref_phase, ref_genome_from, ref_genome_to = (ref_exons[r].mPeptideFrom, ref_exons[r].mPeptideTo, ref_exons[r].frame, ref_exons[r].mGenomeFrom, ref_exons[r].mGenomeTo) ndeleted_Cexons += 1 ref_genome_from -= ref_exons_offset ref_genome_to -= ref_exons_offset r += 1 if outfile_exons: outfile_exons.write( string.join( map(str, (entry.mPredictionId, 0, 0, 0, 0, r, ref_from, ref_to, ref_phase, 0, 0, 0, 0, 0, 0, 0, 0, )), "\t") + "\n") else: if options.write_notfound: this_e = 0 ## use prediction's identity/similarity for exons. ## This will still then flag stop-codons in later analysis percent_identity = entry.mPercentIdentity percent_similarity = entry.mPercentSimilarity for exon in exons: this_e += 1 exon_from, exon_to, exon_phase, exon_genome_from, exon_genome_to, exon_ali = exon[0:6] if genomic_fragment: nintrons, nframeshifts, ngaps, nsplits, nstopcodons, disruptions = Genomics.CountGeneFeatures( exon_genome_from - entry.mSbjctGenomeFrom, exon_ali, genomic_fragment ) outfile_exons.write( string.join( map(str, (entry.mPredictionId, this_e, exon_from, exon_to, exon_phase, 0, 0, 0, 0, percent_identity, percent_similarity, nframeshifts, ngaps, nstopcodons, 1, exon_genome_from, exon_genome_to, )), "\t") + "\n") options.stdout.write( "\t".join(map(str, (entry.mPredictionId, exons_num_exons, dubious_exons, exons_boundaries_sum, exons_boundaries_max, nidentical_exons, ninserted_exons, ndeleted_exons, ninserted_introns, ndeleted_introns, truncated_Nterminal_exon, truncated_Cterminal_exon, ndeleted_Nexons, ndeleted_Cexons, ninserted_Nexons, ninserted_Cexons))) + "\n" )
def pslMap( options ): """thread psl alignments using intervals. """ if options.format == "gtf": use_copy = False else: use_copy = True ninput, noutput, ndiscarded, nskipped, nskipped_small_queries = 0, 0, 0, 0, 0 min_length = options.min_aligned for match, qx, tx in iterator_psl_intervals( options ): map_query2target = match.getMapQuery2Target() ninput += 1 ## if no filter on qx or tx, use full segment if qx == None: qx = [ (match.mQueryFrom,match.mQueryTo,0) ] elif tx == None: tx = [ (match.mSbjctFrom,match.mSbjctTo,0) ] ## if no overlap: return if not qx or not tx: nskipped += 1 continue for query in qx: qstart, qend, qval = query # skip elements that are too small if qend - qstart < min_length: E.debug( "query too small - skipped at %s:%i-%i" % (match.mQueryId, qstart, qend) ) nskipped_small_queries += 1 continue E.debug( "working on query %s:%i-%i" % (match.mQueryId, qstart, qend) ) mqstart, mqend = ( map_query2target.mapRowToCol(qstart, alignlib.RIGHT), map_query2target.mapRowToCol(qend, alignlib.LEFT) ) if match.strand == "-": qstart, qend = match.mQueryLength - qend, match.mQueryLength - qstart for target in tx: tstart, tend, tval = target if tstart >= mqend or tend <= mqstart: continue if tend - tstart < min_length: continue new = alignlib.makeAlignmentBlocks() if use_copy: # do copy with range filter if options.loglevel >= 3: mtstart, mtend = map_query2target.mapColToRow(tstart), map_query2target.mapColToRow(tend) E.debug( "query: %i-%i (len=%i)-> %i-%i(len=%i); target: %i-%i (len=%i)-> %i-%i (len=%i)" % \ (qstart, qend, qend - qstart, mqstart, mqend, mqend - mqstart, tstart, tend, tend - tstart, mtstart, mtend, mtend - mtstart ) ) alignlib.copyAlignment( new, map_query2target, qstart, qend, tstart, tend ) else: # do copy with alignment filter map_query = qval if map_query: tmp = alignlib.makeAlignmentBlocks() alignlib.copyAlignment( tmp, map_query2target, map_query, alignlib.RR ) if options.loglevel >= 5: options.stdlog.write( "######## mapping query ###########\n" ) options.stdlog.write( "# %s\n" % str(alignlib.AlignmentFormatEmissions( map_query2target ) )) options.stdlog.write( "# %s\n" % str(alignlib.AlignmentFormatEmissions( map_query ) )) options.stdlog.write( "# %s\n" % str(alignlib.AlignmentFormatEmissions( tmp ) )) else: tmp = map_query2target map_target = tval if map_target: new = alignlib.makeAlignmentBlocks() alignlib.copyAlignment( new, tmp, map_target, alignlib.CR ) if options.loglevel >= 5: options.stdlog.write( "######## mapping target ###########\n" ) options.stdlog.write( "# before: %s\n" % str(alignlib.AlignmentFormatEmissions( tmp ) )) options.stdlog.write( "# map : %s\n" % str(alignlib.AlignmentFormatEmissions( map_target ) )) options.stdlog.write( "# after : %s\n" % str(alignlib.AlignmentFormatEmissions( new ) )) else: new = tmp if options.loglevel >= 4: E.debug("putative match with intervals: %s and %s: %i-%i" % \ (str(query), str(target), qstart, qend )) if options.loglevel >= 5: E.debug( "input : %s" % str(alignlib.AlignmentFormatEmissions( map_query2target ) )) E.debug( "final : %s" % str(alignlib.AlignmentFormatEmissions( new ) ) ) if new.getLength() > 0: n = match.copy() n.fromMap( new, use_strand = True ) E.info( "match : %s" % (str(n))) if new.getNumAligned() > options.min_aligned: n = match.copy() n.fromMap( new, use_strand = True ) options.stdout.write( str(n) + "\n" ) noutput += 1 else: ndiscarded += 1 E.info( "map: ninput=%i, noutput=%i, nskipped=%i, ndiscarded=%i, nsmall_queries=%i" % \ (ninput, noutput, nskipped, ndiscarded, nskipped_small_queries) )