Esempio n. 1
0
def _main(wav_file,input_json,output_json,mode):
	root_path = os.path.join(os.path.dirname(__file__))
	joint_cnn_model_path = os.path.join(root_path, 'cnnModels', 'joint')
	# load keras joint cnn model
	model_joint = load_model(os.path.join(joint_cnn_model_path, 'jan_joint0.h5'))
	# load log mel feature scaler
	scaler_joint = pickle.load(open(os.path.join(joint_cnn_model_path, 'scaler_joint.pkl'), 'rb'))
	data_wav, fs_wav = librosa.load(wav_file,sr=44100)
	mfshs = MFSHS(data_wav)
	mfshs.frame()
	pitches = mfshs.pitches
	zeroAmploc = mfshs.zeroAmploc
	#frequency = np.array(pitchResult['frequency'])

	log_mel_old = get_log_mel_madmom(wav_file, fs=fs_wav, hopsize_t=hopsize_t, channel=1)
	log_mel = scaler_joint.transform(log_mel_old)
	log_mel = feature_reshape(log_mel, nlen=7)
	log_mel = np.expand_dims(log_mel, axis=1)
	obs_syllable, obs_phoneme = model_joint.predict(log_mel, batch_size=128, verbose=2)
	obs_syllable = np.squeeze(obs_syllable)
	obs_syllable = smooth_obs(obs_syllable)
	obs_syllable[0] = 1.0
	obs_syllable[-1] = 0.0

	#print sf_onset_frame
	score_note,pauseLoc = parse_musescore(input_json)
	resultOnset = findPeak(obs_syllable,pitches,score_note)
	Note_and_onset = pitch_Note(pitches,resultOnset['onset_frame'],score_note)
	score_note = np.array(score_note)
	result_loc_info = sw_alignment(score_note,Note_and_onset['notes'])

	#result_info = saveJson(filename_json,pitches,resultOnset['onset_frame'],score_note,pauseLoc,mode)
	post_proprocess(output_json,pitches,resultOnset['onset_frame'],zeroAmploc,score_note,pauseLoc,result_loc_info,mode)
Esempio n. 2
0
def _main(wav_file, input_json, output_json):
    '''
		first detect pitches 
	'''
    mfshs = MFSHS(wav_file)
    mfshs.pitch_detector()
    pitches = mfshs.pitches
    zero_amp_frame = mfshs.zeroAmploc

    score_note, pauseLoc = parse_musescore(input_json)
    '''
		second detect onset 
	'''
    onset_frame = detector_onset(wav_file, pitches, score_note)
    '''
		sw alignment
	'''
    match_loc_info = sw_alignment(pitches, onset_frame, score_note)
    '''
		post process and save result
	'''
    onset_offset_pitches = trans_onset_and_offset(match_loc_info, onset_frame,
                                                  pitches)
    evaluator = Evaluator(output_json, onset_offset_pitches, zero_amp_frame,
                          score_note, pauseLoc)
Esempio n. 3
0
def main(wav_file, score_file):
    '''
		first detect pitches 
	'''
    mfshs = MFSHS(wav_file)
    mfshs.pitch_detector()
    pitches = mfshs.pitches
    zero_amp_frame = mfshs.zeroAmploc
    energes = mfshs.energes

    score_note, note_type, pauseLoc = parse_musescore(
        score_file)  ## parse musescore
    '''
		second detect onset 
	'''
    onset_frame = detector_onset(wav_file, pitches, score_note)
    '''
		sw alignment
	'''
    match_loc_info = sw_alignment(pitches, onset_frame, score_note)
    '''
		post process and save result
	'''
    onset_offset_pitches = trans_onset_and_offset(match_loc_info, onset_frame,
                                                  pitches)
    filename_json = os.path.splitext(wav_file)[0] + ".json"
    evaluator = Evaluator(filename_json, onset_offset_pitches, zero_amp_frame,
                          score_note, pauseLoc, note_type)
    save_files(wav_file, onset_frame, pitches, evaluator.det_note, score_note)
    '''
Esempio n. 4
0
def cal_system_acc(wav_files):
    def cal_acc(det_note, score_note):
        det_note = np.array(det_note)
        score_note = np.array(score_note)
        det_note = is_octive(det_note, score_note)
        diff_note = abs(det_note - score_note)
        acc_index = np.where(diff_note <= 0.8)[0]
        accuracy = len(acc_index) / len(diff_note)
        return accuracy, diff_note

    sys_acc_res = dict()
    for index in range(len(wav_files)):
        json_path = '/home/data/lj/onset_detect/MUS/evaluate/'
        wav_file = wav_files[index]
        fid = os.path.basename(wav_file)[0:-4]
        #score_note = np.array(score_notes[fid]).astype(int)
        json_path = os.path.join(json_path, fid)
        score_file = [
            os.path.join(json_path, x) for x in os.listdir(json_path)
            if x.endswith('json')
        ][0]

        mfshs = MFSHS(wav_file)
        mfshs.pitch_detector()
        pitches = mfshs.pitches
        zero_amp_frame = mfshs.zeroAmploc

        score_note, note_types, pauseLoc = parse_musescore(
            score_file)  # parse musescore

        predictor = predictor_onset()
        onset_time = predictor.predict(wav_file)

        onset_frame = predictor.onset_frame

        onset_frame = post_cnn_onset(pitches, onset_frame)

        match_loc_info = sw_alignment(pitches, onset_frame, score_note)

        onset_offset_pitches = trans_onset_and_offset(match_loc_info,
                                                      onset_frame, pitches)
        filename_json = os.path.splitext(wav_file)[0] + ".json"
        evaluator = Evaluator(filename_json, onset_offset_pitches,
                              zero_amp_frame, score_note, pauseLoc, note_types)

        accuracy, diff_note = cal_acc(evaluator.det_note, score_note)
        temp = dict()
        temp['acc'] = accuracy
        temp['dnote'] = evaluator.det_note
        temp['snote'] = score_note
        temp['diff_note'] = diff_note

        sys_acc_res[fid] = temp

    return sys_acc_res
Esempio n. 5
0
def main(wav_file, score_file):
    # mfshs = MFSHS(wav_file)
    # mfshs.pitch_detector()
    # pitches = mfshs.pitches #返回音é«Ë?
    # print(type(pitches),pitches)
    # zero_amp_frame = mfshs.zeroAmploc   #音高�索�
    # print(type(zero_amp_frame),zero_amp_frame)

    # pitches_filepath = "/home/ywm/MUSIC/new_solfege_pYIN/data/1011_pitch.txt"
    # pitches = []
    # with open(pitches_filepath,'r') as f:
    #   a = f.readlines()
    #   for i in a:
    #     pitches.append(float(i.split()[0]))
    # pitches = np.array(pitches)

    pitches = demo.pYIN(wav_file)
    pitches = np.array(pitches) - 20
    pitches = np.where((pitches < 0.0), 0, pitches)

    #print(type(pitches),pitches)
    zero_amp_frame = np.where(pitches == 0)[0]
    score_note, note_types, pauseLoc = parse_musescore(  #解析json乐谱,返回乐谱中的note值和休止符位ç�
        score_file)  # parse musescore

    predictor = predictor_onset()
    onset_time = predictor.predict(wav_file)

    #draw_array(predictor.onset_pred)
    onset_frame = predictor.onset_frame

    onset_frame = post_cnn_onset(pitches, onset_frame)
    #print("onset_frame:",onset_frame)
    match_loc_info = sw_alignment(pitches, onset_frame, score_note)
    #print(2)
    onset_offset_pitches = trans_onset_and_offset(match_loc_info, onset_frame,
                                                  pitches)
    #print("onset_offset_pitches:",onset_offset_pitches)
    filename_json = os.path.splitext(wav_file)[0] + ".json"
    evaluator = Evaluator(filename_json, onset_offset_pitches, zero_amp_frame,
                          score_note, pauseLoc, note_types)
    #print(4)
    save_files(wav_file, onset_frame, pitches, evaluator.det_note, score_note,
               onset_offset_pitches['onset_frame'])

    #print(5)
    return evaluator.score
Esempio n. 6
0
def print_save_acc(wav_files, ground_notes, score_notes):
    fwt = open('log/acc.txt', 'w')
    for index in range(len(wav_files)):
        json_path = '/home/data/lj/onset_detect/MUS/evaluate/'
        wav_file = wav_files[index]
        fid = os.path.basename(wav_file)[0:-4]
        # score_note = np.array(score_notes[fid]).astype(int)
        json_path = os.path.join(json_path, fid)
        score_file = [
            os.path.join(json_path, x) for x in os.listdir(json_path)
            if x.endswith('json')
        ][0]

        mfshs = MFSHS(wav_file)
        mfshs.pitch_detector()
        pitches = mfshs.pitches
        zero_amp_frame = mfshs.zeroAmploc

        score_note, note_types, pauseLoc = parse_musescore(
            score_file)  # parse musescore
        predictor = predictor_onset()
        onset_time = predictor.predict(wav_file)

        onset_frame = predictor.onset_frame

        onset_frame = post_cnn_onset(pitches, onset_frame)

        match_loc_info = sw_alignment(pitches, onset_frame, score_note)

        onset_offset_pitches = trans_onset_and_offset(match_loc_info,
                                                      onset_frame, pitches)
        filename_json = os.path.splitext(wav_file)[0] + ".json"
        evaluator = Evaluator(filename_json, onset_offset_pitches,
                              zero_amp_frame, score_note, pauseLoc, note_types)

        print(wav_file)
        sys_acc, sys_diff_note = cal_acc(evaluator.det_note, score_note)

        gnote = ground_notes[fid]
        snote = score_note
        ground_acc, ground_diff_note = cal_acc(gnote, snote)

        ground_sys_acc, ground_sys_diff_note = cal_acc(evaluator.det_note,
                                                       gnote)

        strs = '{}\t{}\t{}'.format('ground', 'sys', 'ground_sys')
        print(strs)
        strs = '{:.3f}\t{:.3f}\t{:.3f}\n'.format(ground_acc, sys_acc,
                                                 ground_sys_acc)
        print(strs)

        file_name = os.path.join('log', fid + '.txt')
        with open(file_name, 'w') as fw:
            fw.write('gnote\t\tsnote\t\tdnote\n')
            for index in xrange(len(gnote)):
                fw.write('{:.3f}\t\t{:.3f}\t\t{:.3f}\t\t'.format(
                    gnote[index], snote[index], evaluator.det_note[index]))

                fw.write('{:.3f}\t\t{:.3f}\t\t{:.3f}\n'.format(
                    ground_diff_note[index], sys_diff_note[index],
                    ground_sys_diff_note[index]))

            fw.write('{:.3f}\t\t{:.3f}\t\t{:.3f}\n'.format(
                ground_acc, sys_acc, ground_sys_acc))

        fwt.write(wav_file + '\n')
        fwt.write(strs)
        fwt.write('\n')
        fwt.flush()
    fwt.close()
Esempio n. 7
0
def _main(wav_file,score_file,est_file=None):
	print(wav_file)
	data_wav, fs_wav = librosa.load(wav_file,sr=44100)
	#start_time = time.time()
	start_time = time.time()
	
	mfshs = MFSHS(data_wav)
	mfshs.frame()

	pitches = mfshs.pitches
	energes = mfshs.energes
	zeroAmploc = mfshs.zeroAmploc
	#print('pitch detection time:',time.time()-start_time)

	root_path = os.path.join(os.path.dirname(__file__))
	joint_cnn_model_path = os.path.join(root_path, 'cnnModels', 'joint')

	# load keras joint cnn model
	model_joint = load_model(os.path.join(joint_cnn_model_path, 'jan_joint0.h5'))
	# load log mel feature scaler
	scaler_joint = pickle.load(open(os.path.join(joint_cnn_model_path, 'scaler_joint.pkl'), 'rb'))


	log_mel_old = get_log_mel_madmom(wav_file, fs=fs_wav, hopsize_t=hopsize_t, channel=1)
	log_mel = scaler_joint.transform(log_mel_old)
	log_mel = feature_reshape(log_mel, nlen=7)
	log_mel = np.expand_dims(log_mel, axis=1)

	#start_time = time.time()
	obs_syllable, obs_phoneme = model_joint.predict(log_mel, batch_size=128, verbose=2)
	#print('cnn detection time: ',time.time()-start_time)

	obs_syllable = np.squeeze(obs_syllable)
	obs_syllable = smooth_obs(obs_syllable)
	obs_syllable[0] = 1.0
	obs_syllable[-1] = 0.0

	#start_time = time.time()

	score_note,pauseLoc = parse_musescore(score_file)

	resultOnset = findPeak(obs_syllable,pitches,score_note,est_file)
	filename_json = os.path.splitext(wav_file)[0]+".json"
	#print('post-processing time :' ,time.time()-start_time)
	
	Note_and_onset = pitch_Note(pitches,resultOnset['onset_frame'],score_note)
	#draw_energe(energes,resultOnset['onset_frame'],zeroAmploc)
	score_note = np.array(score_note)
	result_loc_info = sw_alignment(score_note,Note_and_onset['notes'])

	#result_info,paddingzero_frame = saveJson(filename_json,pitches,resultOnset['onset_frame'],score_note,pauseLoc,0)
	result_info,det_Note = post_proprocess(filename_json,pitches,resultOnset['onset_frame'],zeroAmploc,score_note,pauseLoc,result_loc_info,0)

	#print("total time:",time.time()-start_time)
	filename_pitch = os.path.splitext(wav_file)[0]+"_pitch.txt"
	mfshs.saveArray(filename_pitch,pitches)
	filename_onset = os.path.splitext(wav_file)[0]+"_onset.txt"
	mfshs.saveArray(filename_onset,resultOnset['onset_time'])
	filename_score = os.path.splitext(wav_file)[0]+"_score.txt"
	mfshs.saveArray(filename_score,score_note)
	filename_detnote = os.path.splitext(wav_file)[0]+"_detnote.txt"
	mfshs.saveArray(filename_detnote,np.round(np.array(det_Note),2))

	return result_info['score']
Esempio n. 8
0
    47, 47, 49, 49, 47, 47, 44, 42, 45, 44, 42, 40
]
onset_frame = [
    11, 34, 74, 93, 128, 159, 192, 226, 261, 303, 343, 366, 439, 640, 642, 763,
    797, 844, 873, 906, 943, 977, 1016, 1206, 1354, 1356, 1400, 1474, 1510,
    1542, 1577, 1617, 1768, 1801, 1836, 1877, 1911, 1947, 2052, 2062, 2101,
    2138, 2177, 2218, 2239
]


def load(f0_file):
    f0_array = []
    with open(f0_file, 'r+') as f:
        f0_list = f.readlines()
        for f0 in f0_list:
            try:
                f0 = float(f0.strip())
            except BaseException as e:
                print(e)
            f0 = (69 + 12 * math.log(f0 / 440) / math.log(2)) if f0 > 0 else 0
            f0_array.append(f0)
    f.close()
    pitches = np.array(f0_array)
    return pitches


if __name__ == "__main__":
    f0_file = os.path.join(dirpath, "1011_f0.txt")
    pitches = load(f0_file)
    match_loc_info = sw_alignment(pitches, onset_frame, score_note)
    print(match_loc_info)